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Exrata for ASRL TR 164-2
( (March 1971)

2 - typed line 14, Eq. 1.3 should read Eq. 1.1
3 =~ line 4 at end of line, Bg. 1.5 should read Eq. 1.6

8 -~ line 9, Ref. 3 should read Ref. 2
paragraph 2.2, line 1, Eq. 1.4 should read Eg. 1.9

12 - typed line 4, BEgq. 2.89 should read Bg. 2.88

i4 Eqg. (2.40), minus sign after = should be deleted

16 = Eq. (2.45) should read:
L 3 ¢ "o W i
[2'5}=2Kea‘ [£‘z!!‘km¥£o+{-t4"}e"*+ {?‘}e “3;1.]

20 -~ Eq. (2.74) should read:

840 =Ny LU [EMNICEI LW}

24 = 'Eqa (2-93) slmld read:

(PO (NI A= {2 A°
=% {$JA°

31 - EBEg. (2.119), line 5 should read:

& ¥ .
8= LU LSTIN]{H}
35 - typed line 6 should read:
Then the lcgarithm term goes to ln(-YR/BR) as t, goes to infinity.® Thus, in

1




Errata for ASRL TR 164-2 (Con't)

paragraph 3.2, line 2, Eqs. 3.2 and 3.3 should read Egs. 3.3 and 3.4

Page 53 - Eg. (3.53) should read:

A= Ao cn [w,L2, t1,,), Kul

typed line 2 should read:
The deuendenoe off A - w . and K upon B, Y, and é; is obtained by combining

Paqe 54 - Eq. (3.58) should read:

A=A dr [0, (; + £,0), Ko}

typed line 2 should xead:
‘The dependence of Ab' Nb and KB upon B, Y and z.is obtained by combining

Page 56 - second line of Eq. (3.68) should read:

o [ =
2 (Shagt "*3“ L )e0
Page 59 - second lina of footnote should read:

Eq. 3,123, but the terms of the typeJ[Q dt are retained.

Page 73 - paragraph 4.1, line 14 should read:
avoided by a suitable choice of.ﬂL As a consequence, the solution doas

Page 75 - Eq. (4.8) should road:

{C }_ CoWyy + Cia W, w;;}
Tl Cawi gt Cang?

Eg. (4.6) should read:s

(5]=0%3
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Errata for ASRL TR 164~2 (Con't)
(March 1971)

Page 79 - Eq. (4.29), last line should rasad:

(20U} 2 Le]{u.}A.)é““*j

Page 81 - Egq. (4.38) should read:

a ziggl ‘ 2 2 é
-A-o" (5._._5_; )a. (Qi -Q-a)

Page 82 ~ last typed line on page should read:
°fJAL°r can be rewritten as (see Eq. 4.32)

Page 83 - paragraph 4.5, line 1 should zead:
Consider the vector {w3}. Combining Eqs. 4.12, 4.39, and 4.44 yields

Yage 84 - line 1 , Eg. (4.54) should read:

FRIACHE +—-A A Jriw LT 1{vIA

Eg. (4.57) should read:

B= =(inw [GI{V} +A LU CEXU))

Page 86 -~ Eg. (4.67) should read:

{We}= 2Real [ (LUl Py T)E™™ ecsm-t,J

Page 87 ~ last two typed lines should read:
yields, by taking into account that wat = 0 (Eq. 4.40) and aa/at = 0
(Eq. 4.55) and Eq. 4.70 ,




Page 88 -

Page

Page

Page

Page.

Page

90 -

BErrata for ASRL TR 164-2 (Con't)

Eqg. (4.74), line 6 should read:

+isw[E1(PY] et 1&] {u} 5% e

m.

- 10 [§1 INI[G1INI[G] |{u}

(4.81), line 3 should read:

last typed line should read:
Bquation 4.79 is satlisfied by

95 - 1line 1 should read:
Summarizing, Eq. 4.84 can be solved by

96 - Eq.(4.117), line 10 should read:

=2 Re .[3 (CaU+CaaU®) [A”B e“s: (2AA*B *Aéaﬁ)eit]]

Q7 =

where B, Y, B* and Y' are given by Bgs. 4.60, 4.81 and 4.82.

”—

Eq.

=2Re.[(Cy+3 Caa’) v (R AA e"‘)]

m.

(4.117) last line should reads

(4.120),should reads

B'-g

W

i

paragraph 4.9, typed line 3 should read:

Eq.

(4.123), first two lines should read:

Note that EBgs. 4.80



Errata for ASRL TR 164-2 (Con't)

Page 98 - Eg. (4.124) should read:
AT (B-B)=2i0 T (-2~ G, T) (140*)
Eq. (4.125) should read:
22 F-F)=4Lwh V{3C+(+2U%) ¢ (24U%) Ca
| -3C,. A* %

Page 99 - typed lines 2 and 3 should vead:

Section 2 of Ref. 2 and the coefficients B and ¥ (Eq. 4.60) and B and ¥ (Eq. 4.93)
used here. Note that according to Egs. 2.37 to 2.39 of Section 2, Ref. 2
typed line 8 should read:

with u given by £g. 4.43 and v given by Eq. 4.47.

Page 100 - typed line 1 should read:
Comparing Egs. 4.60, 4.123 and

Eq. (4.135), line 1 should read:

B=[(AF+ig.UT) 1 (X B+ i§ 0T e -]

Bg. (4.135), lines 3 and 4 should read:

-~ i&Uv Y X
= P*‘%—ﬂ'*«f%(é“ﬁﬂ S T
= (BT ) e(Brizg i)+

Page 102 - paragraph 5.3, line 1 should read:
In Section 3, the analysis ig extended to include the bahavior of the

Page 103 - typed line 7 should xead:
Subsection 4.9); whereas BI and Y, are of order onae. Thus setting

£2. (5.5) should read:

Aj= [LL8 4 g P jy‘

Br
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Page 107 - Fig. 2; in middle of Fig. 2, arrow now labelled £ (adjacent to the
angle 8) should be labelled €.

Page 109 -~ Eg. (A.3), line 1 should read:

ﬂ;:ﬂ;(““s’;‘)

Page 110 - Eq. (A.4), line 1 should read:

Q,,= n*rt

Page 114 - Eq. (A.31l), line 1 should read:

a 2 i 3._&5. - z__ a .2
K< = (3‘,‘32);(9,. Q°)

Page 118 - Eg. (A. 49) should read:

._%.g.-.--(ls-zo—”"-"-m%)

e 8 (o 3N g o (1-5 1+U6-4)
*E (oﬂ)‘ ) ¢ 6 +1

typed line 14 should read:
The stability region in the A,N plane is shown (for gz = 0 and gz = 1)

Pagg 119 - foothote, next to last equation line should read:

(Frg)[Hrapt (b-Z)]= Preapsbrtrepd

Page 121 - Eg. (A.63b) should xead:

-At ? 'Atg( N ) {buckling)
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Page 122 - typed line 9 should read:
pond to (see Eqs. A.44 and A.30)

Page 123 - typed line 3 should read:
where A and A, are two arbitrary constants and {U} and {Ul} are given by*

Figure A.l1 - part of the legend on Fig. A.l should read:

Page 126 -
2 992

g == =0
Q10

Page 133 - last typed line should read:

Combining Egs. B.10, B.1ll, and B.1l7 yields
Eg. (B.19), line 2 should read:

+z§-¢; F(A tig A-UAR

Eq. (B.25), line 1 should read:

b“'[(K'a't‘, s A. )‘tz‘fcl(

Bq. (B.27), should read:

lak_'____l = 0

K a‘t4.
Page 136 - typed line 2 should read:

wherek andlb arofunctionsoft,t o o

Page 134 -

Page 135 -

- 281AI")

The value of A 4 is still un~

Eq. (B.38) should read:

B=[- % K& IAF L 1AL~ & 2 dnflan S IR TA

Page 137 -~
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SECTION 1

INTRODUCTION

1.1 Formulation of the Problem

Panel flutter is the self-excited oscillation of a plate or shell when
exposed to an airflow along its surface. Within the framework of the linear
theory there is a critical value of the dynamic pressure, above which the mo-
tion of the plate is unstable and the amplitude of the oscillation Jgrows ex-
ponentially in time. However, it is well known that the presence of (stabiliz-
ing) nonlinear effects induces a periodic motion whose amplitude does not de-

pend upon the initial conditions.

This problem is analyzed in Refs. 1 and 2, where a detailed account of
the methods used to solve the problem is also given. The analysis presented

here is based upon the multiple time scaling technique* and is an extension of

the analysis given in Ref. 1 (see also Ref. 2). Thus, for the sake of simplicity,

the equations of the problem are given here without derivation. The details of
the derivation can be found in Refs. 1 and 2. The analysis presented there is

based upon the von Karman equations for a flat plate (see Eg. A.8 of Ref. 2).

-~

D (14,2 ) V*W + 0, 4 Rl

2X° 29

FE

W _
t’

3 ézﬂ—r
2 BXZ
3P 3w waw @ FW

axaa axay +N N“J 23 (JP‘ ?w)

W W
V "¢ = (axay)" aX* 2y’ (1.1)

The aerodynamic pressure is given by piston theory as (see LEg. A.9% of Ref.Z2)

*®
See Subsection 1.3.




f- = ’_—('a_xu'fjf%) (1.2)

By using the Galerkin method, the von Karman equations reduce to the following

system of equations:

. . N N
W * ol + oW $ZACupp + 2 CorpgrWpWph=o 12

where A is the dynamic pressure parameter.

Explicit expressions for these coefficients in terms of the parameters of Egs. 1.1
and 1.2 are given in Appendix A of Ref. 2 for an infinitely long simply-supported
plate and for a rectangular simply-supported plate, and hence are not repeated

here. It may be worth noting that the coefficients enp which represent the aero-

dynamic forces are such that

€np= = Cpn (1.4)
and further that the coefficients cnpqr which represent the nonlinear effect

of the membrane forces are such that

C"f’g"’=0 for n+ p +q+r = odd (1.5)

Equation 1.5 (as well as the fact that there are no second-order nonlinear
terms) is derived in Ref. 1 by using the fact that the plane of the panel is
a plane of symmetry for the structure.

It should be emphasized that in Eg. 1.3, terms of higher order than wi
have been neglected. If nonlinear terms up to the fifth order were included,

Eg. 1.3 would become (see Ref. 3):

W G0 Won + 0, wmi CopWy +§Z_';_ Coppe WpW; Wy

+Z dﬂf3r5f W?sz WsW—L- 0 (1.6)

P.g,rst=!
It should be noted again that by u51ng the fact that the plane of the panel is

a plane of symmetry for the structure yields the result that:

(1.7)
Cjn?grs% = () for n + p+q+r+ s+ t=odd



as well as that there are no fourth-order nonlinear terms (see Ref. 1).

For the sake of simplicity, only the two-mode case is considered in de-
tail here {although some results are generalized to the N-mode case). As
shown in Ref. 1, taking into account Egs. 1.4, 1.5, and 1.7, Egs. 1.3 and 1.5

for the two-mode case reduce, respectively, to
" i 2 2
\N" ¥ gn Wl +sz Wl ‘-/\-wz + ( C"N, + Ci2W; ) N‘::O

Wa G Wa+ QW2+ AW, T (Car Wi+ oW ) W,=0 .
and
W, + 4, W, + 25, =AWz +(C, W+ CoaWi W,
ol Wit diaWi WS + clisWa' ) W= 0

W. t8:Wo * QoWa t AW, + (CWE + G W)W,
'T(dz\ WffO{zzW.zW;*dzaW: )Wz::'o (1.9

In Egs. 1.8 and 1.9, A is given by

./\‘:K@Z' A {(1.10)

and the coefficients c,, are given by

k
Ch = Chi Ci2= Cuaz ¥ Clzn-"' Clz-’-l
C21= Cazn t+ Coyzy + Capz C22=C3z222 (1.11)

and similar expressions hold for the coefficients dik’

1.2 Outline of the Analysis

The analysis presented here is an extension of those described in Refs.

1 and 2. The analysis described in Ref. 2 is limited in three respects:




{a) It is limited to third-order nonlinear terms.

{b) It is assumed that the flutter frequency is not
"too small" (not of order €).

{c) It is assumed implicitly that the damping terms are

not "too small” (not of order €).
These limitations are eliminated in Sections 2, 3, and 4 of this report.

In Section 2, Eq. 1.9 (which includes the fifth-order nonlinear terms)
is studied in detail. It is found that the effect of the fifth-order nonlinear
terms can reverse the trend obtained with the third-order nonlinear analysis.

A detailed description of this effect is given in Subsection 2.1 where a sum-

mary of the essential results contained in Section 2 is also given.

Next, the interaction of buckling and flutter is considered. First,
the linear problem is examined in detail. For clarity and convenience, the
analysis of the linear problem is given in Appendix A. The analysis of the
linear problem shows that at the intersection of the flutter-stability boundary
with the buckling-stability boundary, the flutter frequency is equal to zero.
Thus, the analysis given in Ref. 1 is not valid in the neighborhood of this in-
tersection point. The solution for Eg. 1.8 is obtained in terms of Jacobian
elliptic functions cn(u) and dn(u). A detailed summary of the results obtained

in Section 3 is given in Subsection 3.1.

In Section 4, the analysis given in Ref. 1 is repeated by assuming that
the coefficients 9, of Eg. 1.8 are of order €. The results are in very good
agreement with those obtained in Ref. 1. A detailed summary of the results

obtained in Section 4 is given in Subsection 4.1.

It should be noted that the analyses given in Sections 3 and 4 deal
with an interesting mathematical problem. The analyses can predict the steady-
state solution, but cannot predict the transient response. More specifically,
during the transient response, it is possible to predict the variation of the
amplitude, but the variation of frequency cannct be obtained. An interpretation
of this phenomenon, as well as a suggestion for future work, are given in

Section 5.

Pinally, as mentioned in Subsection 2.1, in the analysis of the effect of

the



fifth-order nonlinear terms, a condition based upon physical reasconing is used
in order to determine the value of one of the parameters of the soclution.
Since no mathematical motivation is given there, it seems appropriate to apply
the same method of solution to a case for which the exact mathematical solu-
tion is available. Accordingly, a problem of this kind is analyzed in
Appendix B where the results obtained are found to be in complete agreement

with the exact solution of the problem.

1.3 The Multiple Time-Scaling Method:
Secular and Subsecular Terms

The reader is assumed to be familiar with the multiple-time-~scaling
technigue and, in particular, with the concept of secular terms and the condi-
tion for no-secular-terms (i.e., the exclusion of secular terms); a detailed
introduction to the method, however, is given in Section 2 of Ref. 2. For con-
venience, the main concepts are given in the following. The details can be

found in Ref. 2.

By using a perturbation methed, one may encounter terms of the type
[t sin wt] or of a similar type, whereas from a physical point of view one
does not expect a solution of this type, since a bounded solution is expected.
These terms (which show the "singular" nature of the problem) are called

secular terms. One of the singular perturbation techniques used to sclve this

type of problem is the multiple-time-scaling technique. In this technique,
multiple time scales, to = t, tl = gt, t2 = €2t, etc., are introduced in ordex
to increase the versatility of the system. In order to avoid secular terms,

one explicitly introduces a "no-secular-term condition" (see Eq. 1.13) which

generally yields the dependence of the solution upon the "slow" time scales

(tl’ t D I

2'
It should be noted that in this report, secular terms are encountered in
the solution of the no-secular-terms condition: for the sake of simplicity,

these terms will be called subsecular terms.

Finally the condition for no-secular terms is stated. It should be
noted that if L is a linear operator, the equation L(P) = Z has a solution

only if 2 1is orthogonal to UL where UL is the solution of the homogeneocus




equation in terms of the adjoint operator. 1In particular, in matrix notation,

if {U"} is a solution of the equation Lqﬁ [M] = 0, the equation

[M]{P}={?} (1.12)

has a solution only if

LUL_' {2’}:0 (1.13)

BEquation 1.13 is the condition for no-secular-terms to be present in the

solution.



SECTION 2

THE EFFECT OF THE FIFTH-ORDER NONLINEAR TERMS

2.1 Introduction

As mentioned in Section 1, ‘the analysis of nonlinear panel flutter
given in"Refs. 1 and 2 is limited to including membrane-force terms only
up through the third order nonlinear terms. As is well known, the inclusion
of the fifth-order nonlinear terms may reverse completely the trend obtained
with the third-order nonlinear analysis; for instance, in the case discussed
in Ref. 3, the third-order nonlinear analysis reveals the existence of an
unstable limit cycle; whereas the fifth-order nonlinear terms are stabilizing
with the result that for higher values of the amplitude of vibration, the un-
stable limit cycle disappears and is replaced by a stable limit cycle. Thus,
in order to understand better the mechanism of the effect of the fifth-order
nonlinear terms, the analysis given in Ref. 2 is extended up to the fifth

order in this report.

It will be seen in Subsection 2.2 that by using the expansion for {w} given
by Eg. 2.9, the time scales tn = Ent given by Eg. 2.11, and then by separating
terms of the same order, Eq. 2.1 yields the set of recurrence relations given
by Egs. 2.17, 2.18, and 2.19. The first two equations yield exactly the same
results as obtained with the third-order analysis given in Ref. 2. These
results are summarized in Subsection 2.3. The remainder of the section is de-
voted to the solution of Eg. 2.19. Before discussing the results of this
solution, it should be emphasized that a parameter A4 is introduced in the ex-
pansion of Eqg. 2.10. This provides greater versatility in the eguation, and the

value of this parameter can be used to satisfy a further condition (discussed later).

Equation 2.19 is discussed in Subsection 2.4; however, the results are
summarized here. In order to avoid secular terms in the solution of Eg. 2.19,
the condition given by Eq. 2.54 must be satisfied. This corresponds to a

differential equation for B as a function of t_ (B is the arbitrary coefficient

2
of the solution for {W3}, see Eqg. 2.36). The solution of this equation
(written to avoid secular terms) will contain subsecular terms unless Egs. 2.71

and 2.72 are satisfied (the details of this analysis are given in Subsection 2.7}.

7




These two equations combined with Egs. 2.31 to 2.33 give the dependence of A
on t4 {Eq. 2.77).

The solution obtained thus far, still contains an arbitrary parameter
A@' As mentioned above, this parameter is used to satisfy a further condition
which can be described as follows. Consider the curve which gives the value
of the limit-cycle amplitude in terms of the dynamic pressure parameter A. For
"stabilizing" third-order terms and "destabilizing" fifth-order terms this curve
is gualitatively depicted in Fig. 1. It is well known (see, for instance,
Ref. 3) that the lower branch is stable whereas the upper branch is unstable.

Thus, the following condition must be satisfied: the value € of £ correspond-

knee

ing to the maximum value of A on the "fifth order” curve of Fig. 1 is equal to

the value (Ecr) of € for which the nature of the limit cycle changes (from stable

to unstable}. The condition € = € defines the value of A  (see Eg. 2.84).
cr - knee 4

The detalls of the analyses are given in Subseéection 2.5.

It should be noted that this condition is not based upon mathematical
reasoning, but only on physical intuition. Thus, it is useful to verify
the correctness of this intuition by applying this analysis to a problem for
which the exact solution is known. Hence, a one-degree-of-freedom problem
for which the exact solution is known is discussed in Appendix B. The results

obtained by using the physical assumption outlined above are in perfect agree-

ment with the exact solution.

2.2 General Formulation

Consider Eg. l.4. In matrix notation this equation can be written-as

ad;{W} + [Er]adic{W}-r[ﬂzj{W} + A\ [E]{W} +{C} + {D}:o

- (2.1)
where

_ W
{W}— W, (2.2)



[g. o]
[&]- 4. (2.3)
a* o)
(@ | < o
-] .
[E I [? (')_ (2.5)
{C§ { (an + C,;N )W; }
(Cznw + Coz Wz )Wz (2.6)

(2.7}

e {(du W+ dia Wi ws + dis We ) w, }
(d:u W|4+ C‘Z'zW:Wzl *d'*‘%W:)Wz

Equation 2.1 can be solved by using the multiple-time-scaling technique. The
. . . . 3
solution was obtained in Subsection 2.3 of Ref. 2 up to terms of order € . In

. . 5, .
this section, the solution up to terms of order € is obtained. By analogy

to the procedure used in Ref. 2, set

Wg = € wy, + EFWys t+ 559\&5* R (2.8)

or, in vector notation

{W} = E{W-} il 63{""3} +55{W5}+'” . (2.9)

and

-/\—: AF +EV\2+EA.A-4+" vt

(2.10)

%
As is shown in Ref. 2, A2 assumes the value + 1 (see Subsection 2.7).




and introduce the time scales
to=t
ta2 =%t
=%t

(2.11)

Equation 2.11 implies that

“d‘:(i 8;121’6——-—*‘ . )

dt 21, (2.12)

Combining Egs. 2.1, 2.9, 2.10, and 2.12 yields

(& +E + € at ) (e {wi+ e Wl e wsr)

(6] (Zre2 re e ) (€ (W} (W) eew))
1] (efwire{wjre7{wsf+ )

(Mgt €A v EN - ) [E] (EIWSTE W fre® Wofr-)

t € e Csr - 1€7(Ds) = 0 (2.13)

where

{C;} = { CoWL™ 1 Cha Wiy Wy }

Cay V\ruz\’\-rz' +Cas V\E]a (2.14)
3C, WIW, 1 (WisWa 't 2 Wy Way Wiy ) G

{CBS (2.15)
(2W0 Wis Wi + W, Was )Coy + 3WG WG, s

1o



and

\A,-;l dl)"’h):] h/;|d[zf WIW! i3

[)5} =
{ M|4N;-ldz| + WT;ZW;?dz: +Wz d“;
(2.16)

Equating terms of the same order of magnitude (terms multiplying like power of

€) yields the following set of recurrent systems

2w+ (6] me [T} ea e} fwl=0 @7
- 'S%; (W] + 06 2. (Wsh+ [T TWsf v g LE ] [y e 225}
Order € ! [GJ%Z{W:} * AJTE W ]t (C3} =0 (2.18)

Z [ Ws] + [@J%jw;} + m*] {Ws] + ALTE T W]

*zgfa'zfatz{w&}*( af,am a‘tz J{wi+ 4] (afjwf}*gf,“’\’f%)
+ A, LT W)+ ALTET{wW) +{ Csh+{Ds] =0 (2.19)

. . 5
2.3 The Solution with an Error of Order €

The solution of Eg. 2.1 with an'errér of order €5, implies the analysis
of Egs. 2.17 and 2.18. This analysis is described in detail in Subsection 2.2
of Ref. 2. For the sake of convenience the analysis is repeated briefly here,
using slightly different notations which are suitable to study the effect of
the fifth-order nonlinear terms, described in Subsection 2.4. The solution of

Eq. 2.17 is discussed in Subsection A.7 and is given by Eg. A.58.

W] =Afu] €F% 4 a*fLo] e
- 2 Real (A{uj gt ) (2.20)

where {U} is given by Eg. A.59 and wF is given by Eq. A.51. In Eg. 2.20, the

parameter A is a complex function of t_, t

5 4 Combining Egs. 2.18 and

11




2.20 yields

2 (613wl o[8[« A LE ] a2, -

(2.
with
(2,)= 2Real [ 21w L1146 1) U] 24 & %ep e 1 fujpe™
+{C3H 2 Real [ 27”5 2;')8‘;“)#”] 2
where
[Zgsz'(H°}As (2.
[2]= (2w (17 + [q] ) {uf 24 + ALLEJUIA
(2.

+{H ] AA

with {HO} and {Hl} given by Egs. 2.87 and 2.89.

The solution for this system is discussed in Subsection 2.2 of Ref.

In order to avoid secular terms, {23(1)} must be such that (see Eq. 1.13)

Lus {2} =0 (2.

This condition yields a differential equation for A

é‘é‘ + PATYAA =0 (2.

where B and Y are given by Egs. 2.126 and 2.127 of Ref. 2 or

B =LA, LUy TENYJ

12

(2.

21)

.22)

23)

24)

25)

26)

27)



y= ;(_'_ LU {H,} (2.28)
with

d=L Ut (2w [1]+[G] ){M} (2.29)

The vector LUP} is defined in Subsection 1.3 and is given by (see Eg. A.62)

LU= LI, =W (2.30)

with u given by Eq..A.60.

The solution for Eg. 2.26 is given by Eg. 2.72 in Subsection 2.2 of
Ref. 2 as

A:}Aje"?" (2.31)
with
_ _.4[; 208z1t, -2
Al= ( P: tKE : ) (2.32)
and
_ Br 0z
=P )t LalAl+
(2.33)
where

ﬁ‘"'(BK+iPI (2.34)

13




V=% tilx

(2.35)

Finally, if A is given by Eq. 2.31, the condition for no secular terms

(Eg. 2.25) is satisfied and the solution for Eq. 2.21 is given by

[Wi] = 2Real [(BIU}+ [P ) TSP s

where
{Ps“)} = [ N ] { %:)} (2.37)
{?5(3’}= [ L(‘B}J { Z‘:}} (2.38)
with
0
[N]=- ;
0 - WE +i 8, W +05
[ L?)] :__[Pqﬁ)]‘l 2.39)
where
[ (3;] __ ‘7“);+£35'“)F+ﬂ'2 “Me i
Np - W +13g,Wp+L @42

14



It is convenient to repeat here the differential equations for IAI

and ¢ (obtained in Subsection 2.2, Ref. 2):

,5 Al""&;l I:__ (2.41)

FF})

ﬁI "La; /4] (2.42)

:LLG

. 7
2.4 The Solution with an Error of Order €

In this subsection, the expression for {WS} is obtained by solving

Eq. 2.19. Combining Egs. 2.19, 2.20, and 2.36 yields

2 {w,} + 1612, Wl LT LEI o2 =

(2.43)

where

{25}=2Re[( [1] zg_tﬂu &) 2+ A, (€] ) 1)

+ ([I] (25914 = )+[€r] > +A4[E]){W}+{~5}+[Dsﬂ

=2Re. [( (1123, + (€)= +A2[E])(B{u}e“‘”‘t: (R} ere

+ {P‘a) LB“)F'f ) Dt ot, )T[GJ > t/\g{E})
X (A {u} ein‘ta) ({7%(5)} 15UF"[];L{ (;)} st,_.-f

] -ta
;}}QUJF )] (2.44)

15




(5) (3)
where {kS H {kS },

nd {ks( )}are given by Egs. 2.108, 2.109, and 2.110,
respectively.

Equation 2.44 can be rewritten as

{25} 2 Real [?w > F*if Zm Zm ] (2.45)
with

z5 } { ’%61

{f;’j: ([I]Zt‘u)':;—f:-i-[q] ; +]\_ ['E])(Pa; (3)
{ (n}

(2.47)

([1)2iw2 o p (E1+[6)2)(BIUj+{P):
([I]R“‘JF + [1] tn‘[&]a +/JE]) Au} *(@5} (2.48)

In order to avoid secular terms, the follow1ng condition must be satisfied.

LUy {25} =0

(2.49)

Bquation 2.49 yields a differential equation for the function B which is

discussed in Subsection 2.5. Once Eg. 2-49 is satisfied, the solution is

given by
(W, = 2 Real [(cful + {721 EF R} o] 6]
(2.50)
with
“D;u} - 0 '0 { u;} [ {Z‘“} -
RARY e

16



{ PB’J . (9w} +isepgral -A

{??} ) [Lw] {Zi)}w.sz)

. -1
. 2
EAN S U
5

= F { f’};[ﬁ’]{-}f}j (2.53)

PN z
i /\_F - 25Wp +159pf <2

] j\F —qw;+iw#$+ﬂﬁ

-

2.5 The Functions B(tz) and A(tz, t4)

In the preceding section, it was shown that in order to avoid secular

terms in the solution for {ws} the following condition

UM {Z;’} -0 (2.54)

must be satisfied. In Eq. 2.54, LUPJ is given by Eq. 2.30 and {Zs(l)} is

given by Eqg. 2.48, from which an explicit expression (Eq. 2.116) is derived

in Subsection 2.7.1. This explicit expression is then used, in Subsection

2.7.2 to derive, from Eq.

2.54, a differential equation for B, given by
Eq. 2.117:

2B L BB+ 1 (A B+ 2ANB)+ 2 =0
>t (2.55)
with § given by Eg. 2.123
5 - [ 5(») + 5(!)AA#+5(2){AA*)2+§ ﬁn/) ]D(A 56
. 4

with 69, 61 ana 6 given by Bq. 2.124.

In order to solve Eg. 2.55, let

17




B =bA

This yields

(2.57)

28 Arb 2L 4 pbAsy (AX'E+2ARL)+S 20

or, by using Egq. 2.26

1‘; b Y AX (b+b")+--—=

2

Setting

b.= b}z‘f'il‘):r.

and separating real and imaginary parts yields

255 1 2 |Alby + [ 5 ] = 0

abx E 2 G IAl bet[25-],=0

Equations 2.61 and 2.62 are discussed in Subsection 2.7.

these equations are given by (see Egs. 2.152 and 2.153)

(2.58)

(2.59)

(2.60)

{(2.61)

(2.62)

The solutions for

be= be the” [AI+ be LA+ b2 1A LnlA] (2.63)

18



= b 1 LA+ by 2 [AL+ by 1A 2] Al (2.64)

. . i (i
and béo) are constants of integration, whereas bé ) and brl)

(o)

h b
where b,

are given by Egs. 2.154 and 2.155:

BQ’:'E% [Se - 5¢ L2 /3“ + S g)z]”?z)‘g (2.65)

bR 2 R (2.66)

3) | (2)

k)g = 5;7 ESR

R (2.67)
and

v _ A’I w =) ___[_I_ @)

1 ()/R R 2&( I = éR ) (2.68)
(z) | ) _EB- ) ﬁ L ﬁR (2}

= § - 5: - [ SR -2 R §

I Ya ( I Iz ) b;z % RJ (2.69)
b(3) % b(s)

1 T R ' (2.70)

It should be noted that in the process of solving Egs. 2.61 and 2.62, "subsecu-
lar terms"* were encountered. As shown in Subsection 2.7.3, in order to awvoid

subsecular terms, the following expressions for k(t4) and ¢(t4) are obtained

*

"Subsecular terms" are "secondary" secular terms obtained in the solution for
the equation which must be satisfied in order to avoid the "principal" secular
terms (see Subsection 1.3).

19




{see Egs. 2.136 and 2.150)

2 [Si’" 5:)(‘;5 )2]'[‘4
K=K € f (2.71)

)0, = %,'b; '*'@o

(2.72)

6’ t8, e e .

where @l is given by Eq. 2.151, whereas ko and ¢5 are functions of t
It should be noted that thus far, no condition on A4 has been obtained.

Thus, there is still one degree of arbitrariness in the solution. In other

words, from a strict mathematical viewpoint, the constant A4 can be chosen

in an arbitrary way. In the following, a convenient choice of A4 {(based upon

a physical point of view) is described. First, note that in Eg. 2.119, A4

appears only in the definition of 63 which can be rewritten as

N2 (2.73)

S50 =/ LUY [EIL2I(E]{U] @79

is the value of 63 for A4 = 0.

Next, notebthat in Eq. 2.124, 53 appears only in the definition of

6§0§ which can thus be rewritten as

5= (8,0 +:'-‘-jf-‘€-:—“—32p +8,6%)

~ 5(0, . ?j\-A {(2.75)
- R ,/\.2 _ ‘



where

S, = ;(L(és,o - 51(5 "'5'@2)

(2.76)
is the value of 5(0)

for A4 = 0. Next, note that combining Eg. 2.32 and

Eq. 2.71
|Al= ('ﬁ + K G%f‘)ﬂyz
= B
A
e (ter2l ] - ST ] ’
:[”—“’*Ko € (2.77)
Br
with t2 = €2t and t4 = €4t.

As mentioned in Subsection 2.2 of Ref. 2, the
nature of the limit cycle (stable or unstable) depends upon the sign of the
exponent

{ﬁq +€2 [ 8k - ?(%)2]}22%

(2.78)
Thus, there is a critical value Ei
Eer = | —=L%
- ) (2} 2 (2.79)
& - O ()
r
such that if
f >5¢r (2.80)

the nature of the limit-cycle changes.

The physical assumption is that this value of € is equal to the value

knee at which A assumes its maximum value (knee of the curve which gives the

21




amplitude as a function of A); that is (see Eg. 2.10)

¢ A
Knee 21\—4 (2.81)

Equating Egs. 2.79 and 2.81 yields

Se - Sn (Ee e 2t

Jk j\_z (2.82)
or, by using Eq. 2.75
@) ‘/xa @, Be 2 2\ ﬁ
+ P - O (£R) = Z2tafR (2.83)
R P ./\—2 K (lrk) ../\.2
or
.\ [g"’ Pey ¢ ]
A4~ —@-;‘ R ( d/k) gaR (2.84)

which is the desired condition for AZ.

It should be noted that the value of A4 defined by Eq.2.84 corresponds

to the real values of ecr and € only if

knee

{2.85)

I ) Br 2 o)
L[5 (L) 5] >0

- It should also be noted that the fifth-order nonlinear term had an influence
(2)

8 3h

). Thus, the

as is shown by Eq. 2.112 (which defines {H
5(2)

on {and only on)
Eg. 2.119 (which defines 66), and Eq. 2.124 (which defines
fifth-order nonlinear terms will be called "destabilizing" if Eg. 2.85 is

satisfied (that is, if they are such that the system will yield an unstable

limit cycle for higher values of €}).

" Combining Eqs. 2.75 and 2.84 yields 6/%7= 26/ - /2 (g8 sy 12 Gnich simplifi
g Egs. 2. . y R o R R R/YR ch simplifies
considerably Egs. 2.154 and 2.155.
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2.6 Explicit Expressions for the Nonlinear Terms

In this subsection, explicit expressions for {C3}, {CS}, and {DS}

are derived. Consider first, {C3}. Combining Egs. 2.14 and 2.20 yields

(65}

: —a{d - ZwF‘f‘g' (b
{c,, (Ae‘”HA e“)—fc,z(Ae -rA e )(HAE’ + AP i%ﬁ
Ca(AC S SN UAC B Calune Mﬁfgﬁﬁj

2 Eea/ (A3 { Cuf u C‘z } €31:(»0F7[:«,J
U Ceyt UPCse

+2Keal(AzA* {BC., + (U+2uuX )¢, é“‘”}
(WF+2u)Cy 1 3 U Cas (

It

= 2 Real (AB[HQ} é,wrfy—fz,(eq/ (/434# {H,} eﬁw‘pf‘j)f (2.86)

{H}— Cot U'Cre
3 LIC}qT(JBCQI (2.87)

with

and

3C +(U~auu*)c,
1) ]

(UW42U) Gy + 33U Caa (2.88)

In the following, it is shown that ({CS} + {DS}) is given by Eg. 2.107. In
order to obtain this, it is convenient first to rewrite Eg. 2.36 in a slightly

different form. First, combining Egs. 2.24 and 2.26 yields

[z} =[-2iwl1]4[6])+ ALLE] [ {u}A
[~V (20w [T]+1G]){u} + {H]]AA

(2.89)
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Then combining Egs. 2.37 and 2.89 yields
3 7 I (2.90)
with

V: U—(”"f V(I}A A* (2.91)

where

e, - L0 U'(—@(zaw[I]“r[Gl])‘f/\z[E]){u}

- WE + 1§ W+ O3

,U,u)_ - | L0, ]J[-[(Ziw[l]*fﬁ] ){u}*{H;U (2.92)

~ Wi d Wy 193

Similarly, combining Egs. 2.23 and 2.38
(B2}= L) {H & =5 A

=P 8%} A® (2.93)

with p = pz/pl.

Thus, Eq. 2.36 can be rewritten as

{ S'j% }: Zﬁea’[( B{UM{H )éw}fﬁAS[#} é‘w}db] (2.94)

Combining Egs. 2.15, 2.20, and 2,94 vyields
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ISR RN

with

3, = 2 Real [3/426 (Cv + UGC2) e"“”z

+(AB + 24A"B ) [3C, + (U2ud )Q@Ctj (2.96)

i
3= 2Real [4°B 3 (U Coi 170 ) €
T
t (ZAAB + A*BF ) [(2U+U* )Gy tBUTUFC,,IE ] (2.97)

[, = 2 Rea {[C” 2 2u v @5 2G, A (uv + UV U v )6]

:2[2&1’[4\3 (u U‘C,Z)EBTT AA* [2((,{-{-(,{*)’]/_1,2“1/"7?],:36"[} (2.98)

2 3¢T
7= 2Real [A* (VG + UV Cn) €
- T
+AZA*[(2 U'-i-y‘*)cz'.rf;(zuw‘u‘.,. UZV*)CZ;\};Q l (2.99)

Y = 2Real | A°7 (3, tlu+2up)c, Jese  ppta*r (5

(37

i (H U+ UPTL{*'P ) CIZ] e+ Azﬁﬁsﬁ%[u:i@

= (2.100}
t(u=2uff)cs] €7 ]

JE :2&"/“51"' [(2u+p)Cy +3uwPCaa ]7F
(3T (2.101)

F 2AA R [ (urur+p)C, t 3UNPC2]E

2,%3 4 % ek -(T
tARE [(2utp)c, +3uprCa ] €
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Summarizing

.| ar e | et Ci, €37
{Q;}:ZKeal 3AB{ i }6+A3{“ 3ve

U Cyt WG ¢y + UG

3¢, tlu+2uu*)c,, }ezz

+ (A"B"+2A4B) { .
(2lA+*A* )Ci)1~3(A u*(;2

2 (uru*)e, 2U Caz (T
+ A/¥?<j{‘ ) I ;%er_+ { L(Cl , -%U* éZ
Cy +3uu" Ca Ca +3U Cﬂ

e 3¢, +(Wr2up)e; Péi o 3¢,+(Ur2yP)e, &ﬁ‘é‘t
(2U+P)Cyt 3UP G (2u+ ¥) e, r3uPty

oy {3 C.‘+(uu*+u*p+u’°p)c,; }/hé‘s't
(u“"**’f’)C“fBuu PG (2.102)

Next, consider {DS}. Combining Egs. 2.7 and 2.20 yields

{DJ = { g:} (2.103)

with
d,= A7e”T (dytud. +utds)

+ At et [ sdl,+ (Bu2uu)dia H (U 4UPU)d ]

A" [lod,+ (3 U6 uUs U ) de

+ (4U°u™+ cuu*)d,, ] (2.104)
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J;;: A5ei5t( Mdzl 4 Madgz R u5d23 )
AT [(aUrth )t (W43 ) des 45U

+ A T (bura U ) day + (WP 6 UPUF

(2.105)

+ 3UU? )da + 10 UTU chas |
Thus

- 5}2£5Z {j(i”+\jzahz‘f(A4OL3
%‘D5‘% A dz‘u + M3d22+ u5d23

351

(AUWUF ) day + (2US3UU ) s +5 U U s

10dy + (3U%+ 6UU+ U T dlyz + (AW 6 U )ddis |
(6 UTAUT) day + (U6 UL+ BUUR )dax + 10U U s

+A4A*€L3t{5d” (3u+2utd) ol ot (U*+4U L7 Jdls |
J

i

{(2.106)

Finally, combining Egs. 2.102 and 2.106 yields

(o} +[os)= (K] (K} e,

with

{ K;s;} - As {Bc\m (uL‘PZU'P)Cu‘ﬁ/’O‘ |

(ZUtP)Csay + 3UPCan

5 * “adis
*_/\ { dlt*'b(ciz +U Cj H

bldz\*'usdzz+llsdz3
{2,108}
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Cht U (. 3 G
31 2 I ! {») ,”.n) 4% .

(u"*'u*'i' ”P) Czp + BUM*P C::

+A“A*{Ed“ﬂwz*zu”*)d:z*(u4*4u°”")d'5 & (2.109)
(4U +U¥ Jda + (2 U+ 3UPU¥ )daz 15 UPUDas

| 3G, +( U zuu? )c.zs
(U] - 2% X2
{ 5 } = (A"B*+ 2AA'B) {(2ufu*)cz,+3u‘u"czz

Y, ¢
)z waay | (Ut )Ca +(V‘°)/\7\*+ V(%Wz){lu 'zz k
+ (2VAA 2V )[c1|+3uu*c23 i

2 " 24 2u% C=
+ A3A7( 3Cy + (U** 42 -X;P ) },Pl
(2 u*+’P) Cz_‘ +3 u /,0 C-ZZ

LA ody ot (3u‘+6uu*+u*2)d,2+(4u3u*+6uzu*2)d,5j
2 3,.%2
(eural Yyt (UP+ BUTUF+3 UL )da +IOUTU dzs (2.110)

= (A4 2ARB) [H. ] +AA [H] + A s}

with {H.%} given by Eg. 2.88 and

{H S_ {(\Hu*)&; }ZV“’-,L{?' Uuc, }vw*
2 - 2
Cq + 3UUTC, Cy T3UG
{(2.111)

{Hsﬁ : 3¢, + UG 20FP)C, 10‘+{(u+u*)c‘; %ﬂf"#{zuc"z &v"’*
Ut p)C, 13U pCan Cay + 3UWGs Cpyt3U G2

. {nod“ + (3UT6UUT +UFT)d 1 (AU 6 UTWH*)ds }

3, %2
(GU+4 U )day +( (B4 GUUF+ 30U ) daa TIOUTW s (2.112)



2.7 Mathematical Elaborations

In order to simplify‘the discussion of the condition for avoiding
secular terms (Subsection 2.5), most of the mathematical elaborations invaolved
in the solution for Egq. 2.49 are described in the three subsections which

follow.

2.7.1 Explicit Expression for {25(1)}

As shown in Subsection 2.4, the condition for avoiding secular terms in

the solution for {Ws} is given by Eg. 2.49:

LUt {z5)=0

(2.113)

.. . 1 . .
In this subsection, the explicit expression for {ZS( )} is derived and then

combined with Eg. 2.113 in drder to obtain the differential equation for B.

fzo) = [s3{u} 22 «n.lel{ulB
+([815 A lE])IN {2
* [T {uf 28 +{u} 22+ A LE]{ul4
+ (A'B* + 2AA*B ) {H,’] +A2A*{ HJ

+ ABAfl(H3}

(2.114)
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with

[5]-2iwl1]4[6]

{(2.115)

oy using Eq. 2.24, Bq. 2.114 reduces to
{25} = [S]{ul2B + ALTElfulB +{n] (AB%248'8)
+([sTLN IIsIul +ful) 2
20 (ISIIN LY+ [E]IN[S] ) {u) 2
+ (AL TETINTIE)+ AL (E] ) {uf A
+ [STON J{H ] & (A4°) + {H] A°A% 15{u] 24
TIALIETIN{H,] +{H.] A" (2.116)

2.7.2 Equation for B

Combining Egs. 2.54 and 2.116 yields

o [52 + BB+ (AB+244°B) [+ =0

2
(2.117)

with o, 8 and Y given by Egs. 2.29, 2.27 and 2.28, and with § given by

o g 2 atz + 8. 25 A SA + 42 (AH)

+ SAAA + S APAT + o(é—i% (2.118)
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with

S, =Lus (s 1INIIST + 1) ){u]

5. =M LU (TSTINJLE]+[EJINI[s] ) {u}
$5=LU“) (AL TEJIN JLE] +A, [T ){u}

2 LU TETINTLET (U} + et B/
Sa= LU [SIINT{H]

5= LUS (AL LEIINT{H] +{H )

= L (2.119}
Sc= LU {HS} :
Next, a simpler expression for § is derived, by using the expression

for 3A/3t2 given by Eq. 2.26

2L A0

{2.120}
Combining Egs. 2.118 and 2.120 yields
S = 5,6)————+5 At (Sa-55)2AA)
+§5AA*+§.;AA*2+0< s
ET
(2.121)
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Next note that¥

(AU )+ (2p1B) AT (20040 ) AA =0

2
otz

(2.122)
By using Egs. 2.120 and 2.122, Eg. 2.121 reduces to
é = [5(") + éu)AA* -+ 5‘2) (AA*)zﬂ';i’¢£ﬂA]o(A (2.123)
with
5= [ 8- (5:-58)B ]
"=z [85-(8.-58)1r~ (Sa- 8T )(2p44%) ]
6‘”--;}[&- (84-815)(20+0%) ]
(2.124)

1
In fact, using Eq. 2.120

LY A 2 X
2 (A )~2A§§2A*+A -;f__i
= 2ANT (BAIAA) - A (B AR+ AA)

=~ (234 8% ) AAR- (2017 ) AAT
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2.7.3 The Functions bR and bI

Note, first, that Eg. 2.61 is equivalent to*

(Ber i A1) 2, (22— + (5 ) 0

Betlx Al
(2.125)
By the use of Eqg. 2.56, Eg. 2.125 reduces to**
R l [ (2} it 2
%( ; 2):’ L&+ & 1A
olz t B +ig [A] Bet 0z 1A]
(2.126}
4
+ 8UIM + 2 Ln|Al]
?'t4
Next, note that, according to Eg. 2.31
| 2fet,
2:'—-[5—'1' Ke ‘
A Br (2.127)
with K a function of t4. Thus

¥
In fact, using Eg. 2.41 yields

2y 3 bgr _ obe_ 2beir 21Al
[P 1Al )at’ ( Br *&IAIZ)- ot:  Br+ RIAL i ota

= ‘?‘bﬁ “‘2&/!4]2[)/(

21,

*%
Note that £n A = &n |A| + j(d + 2Tk)
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2 e b e L
AR E AT ZIA‘atalAnz

a2k g
>,

"“‘l‘l
2 (2.128)
and
Bet IR = 1A B (—+ L2 ) 108, ko<
R R - ﬁfz IA‘ﬁ ﬁﬂ)_lA‘ﬁK Ke (2.129)
Combining Egs. 2.126, 2.128, and 2.129 yields
’ZPK'tz
2 br R = @At )
—_—y ([BR'f(rRlAlz) B K [ Sk IA' + SR
2 2 | oK (2.130)
SR o o,

2 bR _ __g_‘;_)__ '2/3#2- A 2zt
3t2( Br ‘*&IAIZ) Bz K € ( tKE )

5% e‘zﬁkiz_l_ [ oK

26K 3%,
Pk FrK ots (2.131)
@) -2Br 12
s e

ﬁRK "'-%—é + l(ezﬁﬂtz )
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Integrating Eqg. 2.131 yields

BetRIAR (BR [2f3R ]+ B K Zﬁsz )
@ | -2bet: ﬁ
e ARy e

l o)

o éﬁfz 4_br (2.132)
where béo) i1s a constant of integration. Equation 2.132 can be rewritten,
more conveniently, as
( —zﬁg‘t
br - _ a:g [5'2_5) & . (ﬁ?)}
Betlr IAP 2R K zr.e

8(z) ,ﬁh (-—;—/E--r Kezﬁg’fz
K

. [___L oK ‘°) (21 )]i‘ (2.133)
Pe L2K ots
In the following, only, the case YR > 0 is discussed. Then the limit cycle

exists only for A2 = 1, or (see Ref. 2)

B <0

Then the logarithm term goes to n(-—YR/BR) as t2 goes to infinity.* Thus, in

(2.134)

order to avoid secular terms, the following condition must be satisfied

2
L 2K g 5(2)( Fr )=0 (2.135)
.ZK 2t4 L
oF (@) 2 7 Bry?
o 2L - SR It
K= Ko (2.136)
*The discussion for YR < 0 is modified as follows: the case BR <0 (/\2 = -1} is

considered and the limit is obtained as t2 + - (unstable limit cycle). The re-

sults are the same as those for YR > 0.
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Finally, combining Egs. 2.41, 2.129, 2.133, and 2.135 yields

b - AP K ) [ 52 57 B, 5] 6

R

&} -2 b“” (2.137)
or ~(Be+ Iz Al)( MAI_E;,)
be= X A = (X, + X, LalAL) (Bet iz ]AI")
e (2.138)
(o)
= - 9%
Xo = e
Y
X =
%2*~%[52’—5"’ﬁ + Sp (LE R) J 21399

Consider next the function bI' Combining Egs. 2.62 and 2.56 yields

B = 2k IAbe - (87 55 A

()
+ oz |AI* *au ) (2.140)

In order to find a simple expression for 3¢/8t4, note first that combining

Egs. 2.128, 2.129, 2.31 and 2.135 yields

2 ___ Zﬁfefak _ 1 oK BtiIAL
Taﬂn 1A} = IAF e F. 2 2%a prK A
_ ak Sl (z) Al (2.141)
ﬁﬁﬁﬁﬁﬁ [ "o (i Ze) ] 55,

Thus, according to Egs. 2.33 and 2.141
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ap & 24
Bt:; Iz 31’4/@” /AI ot,

[5;)_§u( )zj | D|A|+aﬁ

MzPR Al @tz >t4
(2.142)
Thus combining Egs. 2.138, 2.140, and 2.142 yields
2br o 20 (Xt X, Ln 141 )AL 28 - 202 2 AT
_ (8T + SV A S, A )
©) @ Be 2 ni a;A] Zﬁ (2.143)
or ﬁp[é"g( ) ITh 58 ot
3br _ / 2 4 2 |Al
o7 = A TIARS TIAR T S,
2 z )
+7, LA 2 7 2 LalA] s
with
- (m___a-ﬂ_
,Zo ) 51 2t4
T =- 8;'.)
Ta= - 62 =2 X
73= - fI%o
74=‘J_X;-[X1
5 o) m 52 (2.145)
= 3
75 d?@fz[ " )]
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Integrating Eg. 2.144 yields

be =T, - 7, (%fﬁﬁmm)
—f?z[’;j; ﬁjxﬂ A]" A]}
R

1, A Ta AL A= 1A W dihs B ) e,

or

b= (1725 4y, ﬁg )f2+(—£+z}%+75)ﬁ1Al

# (ol e 1 AT 2T i+

(2.147)
In order to avoid secular terms in bI’ the following condition must be
satisfied
2
. S
70 7; 2 2
IR 0z (2.148)
or, according to Egs. 2.139 and 2.145
28 g, s Lo sy
a_t4 I &, I
) (1
L[5 B s R T )= 0
i %%
’ (2.149)
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or

V=Pt tP,

{2.150)

where ¢o is an arbitrary constant and
©) ) ﬁ @) ,9 2
b =-[ 87 - 57« 57 (L )]
' g TR T %

(fn [5'2 -52) 3’/2 @) ) ] (2.151)

Summarizing, bR and bI are given by (see Egs. 2.138, 2.147, and 2.148)

()

be = be'+ by 1A + by LAl
+ be [AIAnlAl

i

{(2.152)

br= by + b A+ b2 LalAl
(a)lA|,£fl|A| {2.153)
(o)

and bI are two arbitrary constants and (see Eg. 2.139)

(o)

where bR

bg = Xz—m@
[ 57 - 505+ s (L ]+ b mr

:]: X PR: ; 5:)

(3 _ LK, = 5‘” (2.154)
3”«
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whereas {see Egs. 2.147 and 2.145)

()]

1= Jgin ! 73“74 = _J—L ('S:)“Q%Xz)-ﬁxa*a"%%

L @ (T:f © W fe 2) i@ ¥ oo
g s B [y 50 By sy B IR,

_____I_ m_ u) &) b/z 2
=[5 sa—%w»ép(—;ff—:- T g be g5 %)

B L (s B @
-“()—,; br *2&(51 Tz SF )

b‘i’=-{;+%f§+7g

- B s [5 SeE) ]
b g )
F{(K[s‘:’ -5 (—%H

:J;[ s~ i:g"’ Pfﬁ [zgfi%z.sié’%]

)
b(? = 274 XI X, :“;5 bR (2.155)
R

40



SECTION 3

FLUTTER-BUCKLING "INTERACTION

3.1 Introduction

As mentioned in the Introduction, the analysis given in Section 2 is
valid only if wF > 0. Thus, the results obtained in Section 2 are not valid
in the neighborhood of the intersection point (intersection of the Ilutter
boundary with the buckling boundary, defined in Subsection A.7%*) for which w = 0O

is a double root of the charactéristic equation. For this section, a new analy-

sis is developed in order to study the behavior of the system in the neighbor-

hood of the intersection point where

N=Ne and A=A, 5
with N and A, given by Eqg. A.65; the quantity N is the applied membrane force

and A is the dynamic pressure parameter (see Eq. 1.10).

The behavior of the system in the neighborhood of this intersection point

can be studied by setting

J\.:.ﬁL* + Eafﬁh 0
N = Nyx tE*cosb (3.2)

where 6 is an arbitrary parameter, which gives the direction in the plane (AN

in which the limit € -+ 0 is considered (see Fig. 2). Note that Eq. A.3 can

be written as

| . ) .
Q=0 [1- 7 (NetE7Cos9) 1= Qhtngcost

Q- on[ '*" N*‘*EC‘”@)] Qox +A,£%050
..QL*-QLD (I_

(3.3)
with

Nﬂ)

2

A‘ - Qi.o
B\ (3.4)

The intersection point is obtained by studying the linear problem. For the sake
of simplicity, the linear case is fully discussed in Appendix A.
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A summary of the results obtained in this section is given in the
following. In matrix form, the equation to be solved is given by Eg. 3.5. By
introducing the multiple scales tn = gt (Eg. 3.7), and by assuming an asymptotic
expansion for {W} (Eg. 3.8), one obtains a system given by Eg. 3.9. Separating
termg of the same order yields the set of systems given by Egs. 3.14 to 3.17.

The solution of the first-order system contains secular terms (Eq. A.68) which
are dropped*. If the damped terms (see Subsection A.7) are also dropped, the
solution for {Wl} reduces to Eg. 3.18. Note that this solution does not depend
upon to {but the damped part of the sclution does depend upon to).

Next, the second order system is considered. It is easily shown that
the condition for no secular terms is automatically satisfied.** Thus, the

dependence of {Wl} on t., cannot be determined at this step (the analysis of

the third-order system is necessary). The vector {Wz} is given by Eq. 3.25.
The third-order system is then considered in Subsection 3.4. In order

to avoid secular terms, Eg. 3.41 must be satisfied and then the vector

iwz} is given by Eg. 3.45. The condition for no secular terms (Eq. 3.41) is

a differential equation for A (coefficient introduced in the solution for {Wl},

seg Eg. 3.18) as a function of tl‘ The solution of this equation is discussed

in subsection 3.5 for Y > 0 (hard spring nonlinear terms) only. This is given

by either Eg. 3.53 (vibration about the flat position: unbuckled case) or by

Eg. 3.58 (vibration about the buckled position: buckled case) depending upon

the values of the inplane force (which affect the value of B and the energy &
{Eg. 3.48). For both cases the solution is represented by a periodic function
elliptic Jacobian functions (whose properties are discussed in Subsection 3.10),

with unknown "amplitude".

Thus, in order to study the transient and the limit cycle solutions,

k4
This is "compensated for" by the introduction of the time scales tl' t3, oo g

and the vectors {Wz}, {W4} which do not exist in the basic problem treated in

Section 2.

E X
This is due to the fact that [UY] [G] {U} = 0 (Bq. 3.28); because of the im-

portance of this relation in this analysis, the final part of Subsection 3.3 is
devoted to proving that Eq. 3.28 is valid for the N-mode case also.
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it is necessary to consider the fourth-order system, giveh by Eg. 3.62., If
the condition of no secular terms, Lﬂ%4{24} = 0 is satisfied, the sclution
{W4} is given by Eg. 3.68. On the other hand, the condition for no secular
terms yields a differential equation for B (coefficient introduced in the

solution for W2, see Eg. 3.25)as a function of t_, given by Eg. 3.66. The

1

solution of this equation is discussed in Subsection 3.7,where it is shown that
. . . 2 ;

this equation yields secular terms of the type tl and tl' It is alsc shown

o 2 . . . .
that avoiding terms of type t, yields the variation of A with t_. but then it

1
is impossible to avoid secular terms of the type t

21’
1 unless the steady-state

solution (BAo/at2 = 0) is considered. In this case, terms of type ti are
eliminated by assuming that the amplitude Ao is such that Eg. 3.85 is satis-
fied (then the secular terms of the type t; can be easily eliminated). Thus,
summarizing, by satisfying Eg. 3.85 one obtains the amplitude AO of the limit
cycle but the transient response cannot be studied without introducing

secular terms in the solution for B. A very similar situation is encountered
in Section 4 where it is easier to interpret the results in terms ¢of the re-

sults obtained in Section 2. An attempt at interpretation is given in

Section 5.

3.2 General Formulation

Combining Egs. A.l and 3.2 yields (in matrix notation)

(Wi+[a]{w} +([Q:]+e%coselal )w

+(Ae+€7sin0) [E]{W} +{Ccf+ - =0 (3.5)

where the symbols given by Egs. 3.2 and 3.3 have been used, and furthermore
2 N ~2

[/_\ ] = [\A (3.6)
L

It should be noted that the solution of the linear system at the
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intersection point contains a secular term (see Eq. A.68). In order toc obtain

a solution which does not contain this secular term, it is necessary to intro-

. . . 3 ;
duce intermediate time scales (tl = t, t3 =€t , . . ) which were not used

in Section 2. Thus, introduce the multiple time scales

t ="+ n=0,1,2...) (3.7)

Conseguently the appropriate expansion for {W} is given by

{W} = £{w)] +E‘{W2}+83{w3}+g4{w4},~...

(3.8)

Note that the vectors {WZ} and {W4} are identically equal to zero in the analy-
sis given in Section 2. Finally, combining Egs. 3.5 through 3.8 yields

(Fres )V (efwhretfws - )+ [a)
A tE5p+ ) (EfwR e W3+ )+([RIrETR]) @9

with (efw e & [Welr - )+ EfGI+E G- =0
[ Fv]: [Q; ] +_/\*[EJ
(3.10)
[E]l=cos0 [a]+sinb[E]
a (3.11)
{C }_ Cio Wiy + Ca W5
3 - 2 3
CZ! M,M,’)\'szw“ {(3.12)
3G MZMZ-.. C;:(W:z Wo 2 Why W2y "\[;2)
Ca= ! (3.13)

Car (2 Wi Wi Wi+ Wil Was ) 1 3 CaaWay Wee
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Separating terms of the same order of magnitude yields the following

set of systems:

—aa{tvi/z.} [6]9(“/ [F] (] =0 .
S0l gy 200, TR fw] , .
TR A A S A
T (612 i 4[R] ve)
aﬂffw -r[ﬁ](t{wz Jriwi)
P12t 28 )W +[RIW+ fG]=0  cae
order €

Z 0w + (6] (w4 TR] ]
Zé%af:(wsh (%+2%tz){wz}+ at;" afat)M

“f'[ﬁ]( 5 b{\(\/ atM)*[F] W; fC{ﬁ 0 ¢.an

The solutions for Egs. 3.14 to 3.17 are discussed in Subsections 3.3, 3.4, and
3.6.
3.3 The Solutions for {Wl} and {Wz}

The solution for Eg. 3.14 is discussed in Subsection A.7 and is given
(disregarding the damped part) by Eq. A.68. As mentioned in Subsection 3.2, this
solution contains a secular term. In order to aveid this secular term, it is

necessary to assume that Al = 0 so that Eg. A.68 reduces to
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{W.}=A{U} (3.18)

where (U} is given by Eg. A.69

{u}: {D’L}:{"_]lg,_/éz- | (3.19)

and A is a function of tl, t2 « o o =

It may be noted that the assumption Al = 0 does not reduce the generality
of the solution. As mentioned in Subsection 3.2, the "versatility" is main-

tained by introducing the intermediate scales tl, t3 e e

It should be noted also that the solution given by Eg. 3.18 does not
depend upeon to.

However, the complete solution (including the damped terms, see Eg. A.67)

depends upon to. Thus, to is an actual time scale of the phenomenon.

Next, consider the unknown {WZ}' By combining Egs. 3.15 and 3.18, one

obtains

ey v (el IR+ {2=0

0 (3.20)

{2,)=[a]fuj 2

It is important to note that the condition for avoiding secular terms

{(3.21)

LUY Erzzj =0 (3.22)
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is automatically satisfied. Combining Egs. 3.21 and 3.22 yields

LUs [G] {u}—g—é:O

which is satisfied for any value of aA/atl, since by combining Egs. A.692, A.70,

(3.23)

and A.71,

utslelful=8,-g.u=0

{3.24)

Thus, the system given by Eg. 3.20 can be solved. The solution is given by

(the secular term which appears in Eq. A.68 is dropped, as is done in Eg. 3.18)

(w)= {u]B +{v} 24

[

(3,25)

(vi=[n][&]fu)
0 0 ‘

[N]: . -1 (3.27)

*
For many modes, [N] is given by (Subsection 2.3, Ref. 2)

where Eo is obtained from Fo by eliminating the first row and the first

column.
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It may be noted that the relation

LU [q]{uj=0

(3.28)

is highly important in the present analysis. The whole analysis would have
little significance if this condition were not valid for more than two modes.
Thus, the remainder of this section is devoted to the proof that Eg. 3.28 is
valid in general. It may be emphasized that the following discussion is not
used in the following sections. It is given only for the sake

of generality.

More precisely, it is proved that if the characteristic equation (of the
form®* Det {pZM + pG + FO] =z cipl.= 0) has a double root p = 0, then Eg. 3.28 is
satisfied. Because the existence of the double root p = O implies that the

coefficients c, and ¢, of the characteristic equation are equal to zero; that

Det [F, ]=0

(3.29)
2 put| p[MItple]+[R]) =0
2P De (19 10 )1”-0 (3.30)

The last condition is equivalent to

2 ?;éi}'—li =0 (3.31)

[fki]. it

may be noted that (as is well known), the elements fki and their cofactors

where Fki is the cofactor of the element fki of the matrix [F ] =
o

Fki satisfy the relations

E
Note that for the sake of generality the matrices M and G are not assumed to

be of the diagonal type.
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L-Z'E’[ F'mi : Def [E] éjm
z‘er Fn=bet [R]Sem (3.32)

or, by employing Eg. 3.29,

Zﬁi Ffmizo ;
i im ™

for any value of L and m. Thus, the components of {u} ana {U } which are de-

. ‘ L
fined by Z fli u, = 0 and 2 fil u, = 0 can be expressed as (by assuming le #
0 and FlL # 0) AF
me
Wi = Fmi
W, =I5 (3.34)

with arbitrary values og:m and £. By choosingm =k and £ =1 (or L = k and

m = 1) one obtains

{3.35)

. ]
LU [G”U}:g Uy &ez%c‘"}% g&a Fec

Finally, by employing Eg. 3.31, one obtains the desired Eg. 3.28, which is

thus valid for N modes, also.

3.4 The Vector {W3} and the Equation for A(tl)

Combining Egs. 3.16, 3.18, and 3.25 yields

2} (@12 W] (B} rfBl0 oo

with

(2= (Ul 24 +[61{u] 2 + (67 fu KL
*[G]{Vjatz"’ﬁ:]{b(} +{C5} (3.37)
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where {CB} is given by (see Eq. 3.87)

[C.]=HA

{(3.38)
with {Ho} given by Eq. 3.88.
The condition for no secular terms in {W3} is
L {'% } =0
LU 17 (3.39)

with tU%j given by Eg. A.71. Combining Egs. 3.28, 3.37, 3.38, and 3.39 yields

LU (fup T&TfvE) 28+ LUy [R I uj A+

y 3 (3.40)
LU {Ho}/’\:o
A .
S5 1BA + TA=0
where
{
@ -7 L uh_l [F‘?]Tru} (3.42)
X";’:’LULJ {Ho} (3.43)
with

d:LuLJ({U}‘f[Gr]{V}) (3.44)
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If Eq. 3.41 is satisfied, the solution for Eq. 3.36 is given by {(the secular
term which appears in Eg. A.68 is dropped,as before,for {Wl})

{Ws} - C{M}+(?a} (3.45)

where C is a function of tl' t

{Ps} = [N] {27-'3}
=R ] _lz:lz “I)@]A [E]A*{V“;A .jf) (3.46)

with [N] given by Eg. 3.27, {V} given by Eg. 3.26, and

PYARNEIE and {PS} is given by

k_,__;
1]

[R]=INT (fu}+&]fv])
[R]=IN][R]{uj
| B f=INJTH:]

Note that {Pa}’ {PS} and {Py} are originated by the same terms which yield

i

{3.47)

a,f and Y, respectively. The solution for Eq. 3.41 is discussed in Sub-
section 3.5.

3.5 The Function A(tl)

Next, the solution A(tl) for Eg. 3.41 is discussed. Note first that

Eg. 3.41 can be integrated once to give

”L(at,)‘*ﬁz ”/A = Ct.)

where £ is a constant of integration (actually, a function of t_), which

{3.48)
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represents the energy E of the mass-nonlinear-spring system described by
Eg. 3.41. Thus A is obtained by considering the inverse function of the in-

tegral

t,+7 =
,/2‘5»?6]1 raz (3.49)
The integral in Eg. 3.49 is-an elliptic integral. The properties of the
elliptic integral are given in Refs. 4, 5, 6, and 7. The inverse function of
the elliptic integrals are the elliptic functions, among which the most useful
ones for the present study are the Jacobian elliptic functions. Some proper-

ties of the elliptic functions are given in Subsection 3.10.

In the following, only the case

Jy >0 (3.50)

{which is the most important in the practical application) is-discussed. The
case Y < 0 can be treated in a very similar way. As it appears clear from
Eg. 3.41, the case Y > 0 corresponds to the case of a "hard-spring-nonlinear

term”, Note, first, that the radicand of Eq. 3.49 is equal to zero for

S REIET P
2

2
The function A(tl) depends essentially upon the sign of A(+) and A(_).
two cases are of interest here. All the other possibilities do not correspond

(3.51)

Only

to periodic solutions.

3.5.1 Unbuckled Case

i+) and Ai_) are positive. This implies that (since Y > 0,

according to Eg. 3.50)

Both A

(3 <0 ' (3.52a)

and

_E
4)/<f<0

(3.52b)
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and the solution is of the form (Ref. 4, Eg. 17.4.52)

A - Ao Ch [_-0\) (f,"'f:,o)} Ku]

(2.53)

The dependence of Ab' w, and Ku‘upon B, Y, and é’is obtained by combining
Egs. 3.48 and 3.53 and by using Egs. 3.134 and 1.136%*

E=S A+ LA

(3.54)

W= P A (3.55)

2 {(3.56)

This solution will be referred to as the "unbuckled solution” since it cor-

responds to a plate vibrating about a flat position (see Fig. 3b).

3.5.2 Buckled Plate

One of the values of Af+) and A%_) is positive and the other is nega-

tive. This implies that

*
By using Egs. 3.134 and 3.136

S dA Ty
A=A, C=AJFs* gz =-Ausd =-Aws]|i-ks

and combining with Eq. 3.48
zl(%‘?,)z*/@‘z[* f’ﬁj - CF A ST (1-KS )+ 4 pATUS)
+G VA (1257450 ) =€ = ($BAS +LrAte)
S (FA L PA -5 IA; )44 (-3 A KL AL )0

which is equivalent to Egs. 3.54, 3.55, and 3.56.
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E,>0

and the solution is of the form (Ref. 4, Eg. 17.4.44)

A= Addn [wit+ti), K]

The dependence of Ao, w and K upon B, Y and € is obtained by combining
Egs. 3.48 and 3.58 and by using Egs. 3.134, 3.135, and 3.136%*

2

EaBA AT IA

z |} z
OJ = Zr J//\o

B

KZ: 2(B+YA)
YA

*
By using Egs. 3.134, 3.135, and 3.136

3.

(3.

(3.

(3.

(3

57)

58)

59)

60)

.61)

e A X 2
Az Aed = Aof1-K7s* g7 = Aw-KS0) ~Aowk Ji=s*

and combining with Eg. 3.48

(G- p 4 T A28 = ALK S 1-5%)+BAC (1K)

LAY 2k s )= 28 = (P AL-2E)

2 a% 2 2,2 g4, 2 . 2 2 _
15[ K PAK -0 AT KTt S AWK S LAIK)=0

which is eguivalent to Egs. 3.59, 3.60, and 3.61.
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This solution will be referred to as the "buckled solution” since it corres-

ponds to a plate fluttering around a buckled position (see Fig. 3c).

3.6 The Vector {W4} and the Equation for B(tl)

Next consider the vector {W4}. Combining Egs. 3.17 with the expressions

for {Wl} (Eq. 3.18), {Wz} (Eg. 3.25), {W3} (Egq. 3.45) and {C4} (Eg. 3.91) vyields

(3.62)

' Z{Wa 5 )
ia—%?i+ [Q]a‘fb(w‘} t [E]{WJ +[Z]=0

with

(Z]=225 (Wl = fwf+ [RIW{C] +

!

6] [ 2 W]+ Wl e 2 7u) )

i AZ{HJ _2%'—'2!

(3.63)
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where {HO} and {Hl} are given by Egs. 3.88 and 3.92.

The condition for no secular terms in {W4} is

LU {24} =0

with {UL} given by Eg. A.71. Combining Eqgs. 3.28, 3.63, and 3.64 yields

Cuns (fup+ (@) 58 + Lum LR {uls
e 3ABLU {HY + L (2 {ud+el{vix2 ){,at

(3.64)

wLlh (T 1{Pc 1+ {v] );?
F (T611P, br (R (v))2

tL (16 1{p, §+ {H])A2AS

(3.65)

It mav be noted that the terms with 3A/3t3, BB/StZ, and 3C/3tl disappear be-

cause of Eg. 3.28. Equation 3.65 can be rewritten as

oA
@f*PB Y IYA B 2 T,

+ .o ( °A 2A 2 BA

0 = 3.66

" \sE TP P8R F =0 wece
where (in similarity with Egs. 3.42, 3.43, and 3.44)

«= LU (v]+[q) {?d])

o= LU ([E{vi+lslf?, })
f, ";,(" (%{HJ'!‘[G]{PJ}) (3.67)
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and ¢, B and Y are given by Egs. 3.44, 3.43, and 3.42.

Finally, if Eq. 3.66 is satisfied, the sclution for Eg. 3.62 is given

by (the secular term which appears in Eg. A.68 is dropped, as before for

{wl}) .

{W4}=D{U} *{R} (3.68)

(1= IN] (2]

with [N] given by Eg. 3.27.

where

The solution for Eg. 3.66 is discussed in Subsection 3.7.

3.7 The Function B(tl)

In the preceding subsection, it was shown that in order to avoid secular
terms in the solution for {W4}, the condition expressed by Eg. 3.66 must be

satisfied. This equation can be rewritten as

;a—zé +P_B +33/A25 +(5aé;)“'8=o (3.70)

ot}
with
_[,2A Lo FA
5= | oot & o +, 20+ 304 at,)T
29
‘a‘tz( ) ( )+30/A A) (3.71)
with

™
i

““,[151 ‘/5) (3.72)

=0
0

)
7(0/' -7 ) (3.73)
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The last expression for ¢ is obtained by using the derivative of Eg. 3.41

A 2A 2 94
_—-+3 e (3
aﬁ+ﬁat, S A >7,= 0
In order to solve Eg. 3.70, set
B =24}
ot
(3
Combining Egs. 3.70 and 3.74 yields
n/ 74 ; 24/ , —
b+ KB+ 2 A'b + AL +35AAb+5 950
(3
with ()" = %E— { ), and using Eq. 3.74
1
/" I |
2Ag+Ab+-A75=0 3

which is equivalent to

(BA7)" + 5=0 :

J
b=- | 57. Idt, +bo e
(%2,
with

szSa’i,+5 3

The integral I is discussed in Subsection 3.2 and is given by Eg. 3.117.

explicit expression for the function b is given by Eq. 3.123.
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.It can be seen that if E!E/Gtz is used to avoid secular terms of the

type t Q* then it is not possible to eliminate the variable t. in the equation

1
for T(tz). In other words, if 0d E}Gt # 0, it is impossible to find a function

T independent of tl**.

On the other hand, the equation for Ei(t2) is so complicated that it
is not of particular interest here. From the viewpoint of the application,
it is more interesting to consider the steady-state problem (limit-cycle

solution) for which

295? =0

f {3.81)
2l2 -
Then the integral I, given by Eq. 3.117 reduces to (for c = 0)
2A ) ~ o 2A 3 9/
= — Cf‘f 1‘5?.1: A 1~C¥A —
-3 3 ot, (5%
Equation 3.82 contains secular terms of the form CS . tl where the expression
for CS - is different for the unbuckled and the buckled cases, as follows
For the unbuckled case (that is, for A given by Eg. 3.53 and 1(2) given
by Eg. 3.112) :%%*
~ i 2 E 2 ,
C.=CtGCA [—- - (/=K )]-——z
5.7 Y K (3.83)

whereas for the buckled case (that is, for A given by Eg. 3.58 and 1(2} given
by Egq. 3.113):

~ ~ 2

(:ssl = (, *C2 AO

M’m}

(3.84}

In Egs. 3.83 and 3.84,’§ and K are given by Eg. 3.138.

— .
By setting 8§/Bt2 + c, = 0, the terms of type tlQ are eliminated from

Eq. 3.123, but the terms of the type @ dtl are retained.
* &k
For a better understanding of this question, see Sections 4 and 5.
¥k
Equations 3.114 and 3.137 are used here.
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The condition for no secular terms

C,.=0 (3.85)

yvields an equation for the amplitude of the limit cycle Ao. Note that this
equation is of transcendental form since K (given by Egs. 3.56 or 3.61) and
thus'ﬁiand'f depend upon Ao. Once the secular terms have been eliminated

from I, Eg. 3.79 can be used to evaluate b; the secular texm in b can be

(1) (1)

avoided by assuming a suitable constant value T

for 9T/dt. (actually T
2
1)

is a fungction of t_ . . . );

3 gives the dependence of the period upon €.

3.8 The Nonlinear Terms

In this subsection, explicit expressions for {C3} and {C4} (defined
by Egs. 3.12 and 3.13) are derived. Consider, first, the vector {C3}. Note

that Eg. 3.18 can be rewritten as

{W»}: ( V\v\/é.' = A {Ll( (3.86)

Combining Egs. 3.12 and 3.86 yields

H

{CB} _ As o +C. W AB{FL}

Cz(u"' sz. u3
(3.87)
with
C.,ﬂ' CL; LAl
[H. = 3
CZI‘M-‘” szu
(3.88)



Next, consider the vector {C4}. Note that Egqg. 3.25 can be rewritten as
[wf=f b=t T 0] 24
2 |7 = —

wWs. U | a2t (3.89)

}
U= .‘_(Zingz u

with

{(3.90}

Combining Egs. 3.13, 3.86, and 3.89 yields

[AEEYE: {C“ e 3

Cz_|u + CZZ u

2 3 { 2C,ul }
at’ Cll U--‘l" 3C21U.LLZ

=3B R+ A28 (K] G.o1)

with {HO} given by Eg. 3.88 and

Cro UV
A BN T 1) P

Cory V436, WU

3.9 Mathematical Elaborations

Consider Egs. 3.79 and 3.80

f—-——— Tdt, +b,

{3.93)
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with

I=[sdt, +C
(3.94)
where
D aA ? ] rA* aA )
:5:&~2(—a‘%:)+(ﬁ+3[l4 ){E«E) (3.95)

In this subsection, the explicit expression for b is obtained. The
secular terms are included in the analysis. The discussion of the secular

terms is given in Subsection 3.7. Equation 3.94 can be rewritten as

I:I'+IZTE (3.96)
with ‘
A 2
I,:fg%{’a—{)df, 5.5
and
oy = .2 'BA 2
I,= [(B+35A ){5-5) 0/{,
B aFH (2E-pA-FA
= J(Cot CA+ Cup*+ o A® ) I, (3.98)
with = G I+, I%+ ¢ I+ C.TY

C.=2f &  c,=-Bpt6r&
{3.99)

— e 32
Coz-+Br-30pF C=-% rd



and

™. fA&oH, :fA’g—_?-:’_A———o(A

(3.100)
2t
3.9.1 The Integral Il
Consider first, the integral Il, given by Eq. 3.97. Note that differ-
entiating Eg. 3.48 with respect to t2 yvields (by using Eq. 3.41)
2 (aA 2 2& sy 2A
- — = - -+ A -
o1, Eat,) 2 ota 2 (f3/l v ) 2tz

o2& 2A 24
=2 (3—{2 i at, 2, ) (3.101)

In order to find 8A/8t2, it is convenient to follow a process discovered by
Hermite (Ref. 6, p. 245): differentiating Eg. 3.49 by having in mind that

are independent variables) yields

only A&, T, and 5 depend upon tz(tl and t2

> C = | =Y _ Qté /A d a
>f: 2¢ -BA-L g+ 21, o1, /(25~/sa‘-§m)%
z (3.102)
Equation 3.102 is equivalent to
2A 24 o a&
- * éQ ) {(3.103)

afz- ot, otz ot

where

da t -
= - 'r A \?
@) f (25-,50“-2{&4)%“ / /at)&/f’ (3.104)
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Combining Egs. 3.101 and 3.103, one obtains

aA “ 98 2 ;
%*(S?') - afz+2:f’atlf’( . | Q)
aA
atz {2 at{ Q]"';a‘_z' pory 52_—2- (3.105)

Thus, combining Eqs. 3.97 and 3.105 yields¥®

atl /[2 +af1 a'tl) Q]dt T 5E atz é% (éél }dei

1 9T
- _EZ? oA 2 2T /3 2
ot [f' (at.)Q]+~a?z (—Bé;)
= atf ) {.é Q)+ = a'tz (’%t% )2 | (3.106)

3.2.2 The Integral 12

(o)

Consider Eg. 3.98 which involves the evaluation of the integrals I

1(2}3 I§4§, and 1(6). Note, that according to Eg. 3.100

*theg that by integrating by parts
fat,{ )Qa’f 26? ‘/(ff)zf‘g d,
(a;_f,)@ Z,

since

EZE%- - (.Eyg 2
ot o1, )



Im = [CH, = ‘f, (3.107)

Furthermore®

a__4f 7% 4& 1o 2 A 4 (3.108)

and

&4 54 5) a.t_' {3.109)
= (32p", 128 ) 7 3288 1), 1P Ay 2 2/
(’50” } 13§ et isr a‘l;A Jfa“t'%
Thus, combining Egs. 3.98, 3.107, 3.108, and 3.109 vields
N 32/35 4F
I TCS5 -G ){-f[C CBK
32p8% | 12& ()
6(/5{2 _)]I (4"‘““‘@/5[1)
2 9/4 (2] o~ ~
- 5f9f'4 G’f_fCI *C4§AA+C‘%/43
l {3.110}
*Following a procedure used in Ref. 5, pp.605-607, note that
n
2 (2447 )= 2 (Epa ). (L =1
J2E- A 4°
+J2 & BA™- J’A4 71/]"") [2Eng" T BmDA —-(mz)/)w
which is equivalent to a%i
(n /) (net1) a’ nt3
at/; = 2En I pone) IM - £ (n42) I

from which Egs. 3.108 and 3.109 are obtained for n = 1 and n = 3, respectively.
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with

s /15 9*
Gz C; - C4'f£é€ + C; (£2£l§j~f 12& )
30 i157% 5
2 /6
Cam-Cr 2+ Co 2B,
r (54
- _C, =
Ce 50
(3.111)
The integral I(Z) cannot be expressed in terms of the Jacobian elliptic
function. For the unbuckled case (A given by Eg. 3.53), 1(2) is given by
{Ref. 6, p-235)
A o
2
I(?): Aj fch (Q),f,)d%l :-ZO—E Ch(a-){[ )
(3.112)
whereas for the buckled case (A given by Egq. 3.58)
2 Ae
3
T%- Aofdn(u),t)df,:w" Dn wt,
(3.113)
with {see Eg. 3.141)
Cntu) = {Eiu)-" (=K u f ke
- (3.114)

DnlUu)= E(u)

where E{u) is the Legendre first elliptic integral. Note that



'E(u):E u_—f- /FU\A&&'CWM
K
as is shown by Eq. 3.137.

3.9.3 The Function b

Consider the function b as defined by Eg. 3.93

b= J(2 L dt, +h,

where I is obtained by combining Egs. 3.96, 3.106, and 3.110

1= [ 2¢ 2 (f,@)+§£ ](_;% o+ Gty + G LT

>t >
*Q%A+C~2—§A’A3+6
Combining Egs. 3.116 and 3.117
b =28t 2%, O [ 2uat, 0 (22)
+Cde "dz‘ ‘f‘Cg/A/aA dt +CQ+E

Note that by integrating by parts

f/;% V4o, = ¢, - fadt
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Furthermore ,*

T [A Jot = [A(2L A
ﬁnlA Ar

{(3.120)

JP:L
with
2 _ +~/,z_
Ay = LI B arE
) r
(3.121)
Finally, **
3)_ 3,04 ,
7= [ A Ut = 412
= -——5— “’_. _— _?_/1 (3.122)
t)’j a”znat,
Thus, combining Egs. 3.118, 3.120, and 3.122 yields
b=§fft@+9?£+cou@ fadt,)
A 2)1 oA 2 —0
t G IR (G- L) T G 2
{(3.123)

+ C& * b,

* 2
By setting A" = &, one obtains the elementary integral

T Lfag-py-£3T)d]

* &
Note that

.5_@ }Zn{'g—%) , %)’Z(—zﬁ,@ _20°A7)

or

L2 - p T T

&8



3.9.4 The Function Q

Consider the function Q defined by Eg. 3.104

Q= [(2A)7d

(3.124)
where (using Eq. 3.136)
-2:? :"/41: Sn(wf,)d‘n(w“é,)
21, (3.125)
for the unbuckled case (A given by Eg. 3.53) and
2A _ A KiCh(wt ) Shiwt)
ot, (3.126)

for the buckled case (A given by Eg. 3.58). Note that* (see Egs. 3.134, 3.135,
and 3.139)

- - Ms* + K nd* (3.127)
sn*dn*
and
I 2
—— =ns*+nc
Snch (3.,128)

Thus for the unbuckled case

- ' l . 2
Q'A: sr.zdnzdf':;ﬁ;: [(H5+K nd?)du

:.‘42‘“J (Ns U+ KN U ) (unbuckled) (3.129)

% - .
The general procedure is given in Ref. ¢ where use of the general Glaisdel

function is made.
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and for the buckled case

’ | 1 ety ol =
@=‘T‘/Shzcnzdf; -A:szf(ns+MC)c/u_

|
= PR (Nsu+ Neu) (buckled) (3.130)

The expressions for Ns, Nd, and Nc are given by Egs. 3.141.

3.10 The Jacobian Elliptic Functions

Consider the Lagrangian elliptic integral of the first kind (Ref. 7,

u:ﬁ’ o ¥ :fsw dt
o 1= K2sin™y o JI-t* JI-k*#?

P, 54)

(3.131)
By taking the inverse function one obtains the Jacobian amplitude
391: am LL
(3.132)
The Jacobian elliptic functions are defined by(Ref. 7, p.92)
S=snu=siny =sin(Gmu) » (3.133)
C:CH[,(:COSf:COS(O/mu):J,,SZ (3.134)
o =dn U= J/~/<Zsm‘f = J - K*snu
(3.135)

These functions are plotted, for convenience, in Figs. 3a, 3b, and 3c. The

functions s, ¢, and 4 satisfy the following properties (Ref. 7, p. 96)

(3.136)
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It is convenient to introduce the function E (Ref. 7 pp. 97-98)

~—

7]
Fiu) ={dhzudu:—f——— U+ 2nhu
e Kk (3.137)

where zn{u) is a periodic function (the Jacobian Zeba function, see Ref. 7,

p.98) plotted in Fig. 3d and

~~

i

E=E(k)=F(KF) | (3.138)

are the complete elliptic integral of first- and second~kind, respectively

(Ref. 7, p 54). It is convenient also to complete the elliptic functions by

introducing the following functions

| ] ]

hs=— he=—L d=—

5n ch T

sSn SN Cn

C = =— d==- =

> Ch > cin Cd dh

_Cn _dn _dn
C5= n dS——S—;‘ de cn (3.139)

The twelve functions (Glaisdel's functions) defined by Egs. 3.133, 3.134, 3.135,
and 3.132 have very interesting properties, described in Ref. 6. It should be
noted that the integral of the square of any of these functions is not expres-—

sible in terms of the Jacobian functions. They will be indicated as

u . d )
Pru= f prouadd (3.140)
where pr stands for any combination of s, ¢, 4, and n* (Ref. 6, p. 235). These

functions can be expressed in terms of the function E (defined by Eg. 3.136)

as follows (Ref. 6, p. 238)

*

for example, Dnu = Ju dn2 udu = E(u) (see Eq. 3.136).
o
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m
w
<

|
|
aml

l

In

O

S
Scu -,%;;(-E +§C-Cl)
Dcu--E+u+-5§-
Ncu:ﬁz(~E+K’u+§é‘l)
Dnu =E
SnU=-o (CETU)
Coth == (E-K"u)
Nd ol = —a (E-K°35)

Cdu =5a (~E+u+k*3E)

/
K*K

Sdu =

(3.141)

_ l2 _ 250
,z(E Ky sz_)

with

{3.142)



SECTION 4

SMALL DAMPING TERMS

4.1 Introduction and Summary

In this section, the problem of small damping has been studied. - Assume

that the damping is of order €

3n= Eﬁn (4.1)

Then the governing equation is given by

AW g A8 QW - AW+ G G o

d N‘ &3 sz T QWA AW, + CaWiW,+ CaWNZ=0 (42

Note tﬁat with this magnitude of damping, the imaginary part of u in Eg. 2.40
of Ref. 2 is of order €, hence the real parts of o, B, and Y in Egs. 2.71,
2.69, and 2.70 of Ref. 2 are also of order €. Therefore 3]Al/8t2 in Eg. (a)
of the footnote following Eqg. 2.72 of Ref. 2 is of order €. This obviously
violatés the principle of balancing terms of order €. Therefore, a new
scaling is needed. A convenient set of scalings has been chosen in Egs. 4.3
and 4.4. Note that the "odd" scales, t

, t e o« « , as well as the "even"”

’
vectors {W2}, {W4} have been introduced% Tie first-order system, Eg. 4.10,
is studied in Subsection 4.3, where it is shown that A cannot be determined
yet. The secular terms in the second-order system (Subsection 4.4) can be
avoided by a suitable choice of XF. As a consequence, the solution does

not depend upon t.. Next, in order to avoid secular terms in the third-order

system, one obtaiis the variation with t2 which is periodic and does not yield
any limit cycle. Finally, by avoiding secular terms on the fourth-order system,
one obtains an equation in the scale t3. The real part yields the change of
amplitude in time and the limit-cycle type of behavior. But the imaginary part
cannot be satisfied unless the steady state has been reached. In other words,
secular terms cannot be eliminated completely during transient response. This

study shows that although the multiple time scale enables one to see the
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variation of the amplitude and predict the limit cycle amplitude, it is not
general enough to avoid secular terms during transient response. A possible
interpretation of the existence of secular terms in the transient response

is given in Section 5.

4.2 General Formulation

Having introduced damping terms of order €, it is convenient to intro-

duce multiple time scales of the form

't-n':gnf Nz o0,0,2,---- (4.3)

Similarly
(wi=efwire fwi+eiwiret fwad+ - e

Note that the "odd" scales tl' t3, ..+ « , and the "even" vectors W2, w4; .

have been included. Combining Egs. 4.1, 4.3, and 4.4 yields, in matrix form,

{see Egs. 2.2, 2.4, and 2.5)

-

(—%ﬁ et )2( £{w]+ Ez[wi§+€3{wsgf€‘*{wé+-~)

+elq] (F+esp-) (efmd+Emd+ efuyjs.)

+ [ (Efw ]+ e fw.f+ 2w+ £ Wefr-)
1 (A, + A8 [E] (elwi+Efw.l+ e fwefe - )

FE e et e e =0

(4.5)



with

(6] =F3NJ .

=4
‘/\‘ - (4.7)

I\W\\"" C|l“rl }

(o={¢
Ca1 Wy Wy + Caz w3 (4.8)
{Cu 3\f\r1\ |1_‘.C12(N]2N2+2N: Z\W; )}
(4.9)
Cz\ (szw.u +2 \AE|W-HW:2)+CZZ SW;I W;z

Separating terms of the same order yields the following set of systems:

ij%‘ﬁ}h[ﬁﬂ{ }fl\.[ﬂ{ gr—
2 (4.10)
2 (W + 197 (Wi} + A LE] W
{(4.11}

25 T+ (615 {f =
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Order 63:

2w+ [T Wb+ Ao TETf i)
*23291‘, §+(5%TZ%T:)(W'}
+ [&] (2 (W + F{w])

+ LBl w ]+ {af=0

(4.12)

4
Order £

2 () + (2] o Ao CET

’“Z;at{m 5525 ) )

2

> >F
i ( 23’&9’1:3 ’ Za'f; ot, ) {N] g

P (6] (2 w] + 2 T 2w

A BT (W +¥Cd=0

(4.13)
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4.3 The Vector {wl}

Consider, first, the vector {Wl} which can be obtained by solving

Eq. 4.10 as follows. First, set

pet. (#1111 +[ Q] +A[E] ) =0

{4.14)
or
P+ -Ao
b4 2 = O
e T)*Qz (4.15)
This is equivalent to
z 2 ,
P*+ (7 +Q; )P +Q7Q5 + Ne=0 (4.16)
which yields
2 Qz L OO
e (@17

Thus, there are four roots. These roots can be written in a more interesting

form by introducing the positive parameter N < 1, such that

Koz gy L)

{4.18}

Then Eg. 4.17 reduces to

:~( liq(ﬂ‘z + 1?7112) - _w: (4.19)
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with

L e R A e 5
w——TQ,+TQ2

Thus, the solution for Eq. 4.10 is given by

(W }zkeal[A+{u e AL fuj “"J‘]

where A% and A are functions of tl' t2, and so on, and furthermore

(g = (o]

is the eigenvector of the equation

(- i 2]+ [+, [ED) (k] =0

or, in explicit form (see Eg. 4.2)
(QF - W ) = Ay Us=0
2 2 .
A, *(Q-W:)Us=0

or, using only the first equation

Us = Q‘X‘”z" = [l (- 2)-(Ehat ]

X‘[u—*z‘)(":‘ﬂ?)"j"ﬁ_ 17 :_}:;*7
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(o)

u-r:"(“,‘i‘:u
Hn (4.26)
__/ [+ _
U-= T (4.27)

Note that the value of N cannot be determined from the system of order €. As
is shown in the next section, the value of n(and thus of Ao)is determined by

. 2
the effect of damping terms on the system of order €.

4.4 The Vector {W2} and the Relation SA/Btl =0

Consider the vector {Wz}, which can be obtained by solving Egs. 4.11

and 4.21, yielding

2 [u}e [ (] +AET ()4 (2.} =0

21,
{(4.28)
with 2
(2.} = 2525 (Wi + [a] 2, {w]
(wWyts
’ZReal[war (2{u1~} 8A+ + [GT] {M} ) .
AT
rio-(2{u) 2 + (@1 {uA )€™
(4.29)
In order to avoid secular terms, the conditions®
2 LU ) fus] 2R + LUy TG fuef A =0
ETts (4.30)
*Where, as usual, [Ui] = [1, - u+]
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must be satisfied. This yields

-0t
A, =A: € ' (4.31)
with

2
| - Uy
(4.32)
Assume that
&> ¢
2 1
(4.33)
Then the use of Eq. 4.27 yields
T > 0 (4.34)
whereas the use of Eq. 4.26 yields
> ? < g e
0b20 for UsS 3/32 (4.35)

. 2 = R .
Thus the solution becomes unstable for u, > gl/gz. Hence, it is convenient

to choose N such that the solution is at the limit of the stability:

(4.36)
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or (see Eg. 4.27)

g, 14 o (4.37)
which implies (see Eg. 4.18)
J\ = &182 (1}T~£22)2 ,
o - = 2
( 3|ﬁ.82) {4.38)

In the following, the solution at the value of Ao given in Eg. 4.38 is
considered. Furthermore, for the sake of simplicity, the term of Eg. 4.35
which contains A_ is dropped since A_ is exponentially damped. Thus, Eg. 4.21

can be rewritten as

~lwto

‘wto
{W'} = A {u‘ € *A*{H*}e (4.39)

where A is a function of t_, t., and so on. Therefore

2 3
2A _p (4.40)
ot
Furthermore
q z
wzz wz_ —82-‘ Q'z .1.____:&]___.. QZ
3l+gz 3]'1'8;
{4.41)
and
]
{U}‘-‘ {a} (4.42)
with
- _[3
u *‘j—r
d.
(4.43)
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Note that by using Eq. 4.1 and neglecting higher order terms, these results

agree exactly with those obtained in Ref. 2, Section 2.

Finally, Eg. 4.28 can be solved to yield

{WJ:ZR@MK B{u} _fA{Vf )ezioofaj

(4.44)

with B a function of tl' t2 and so on, and

{V}:Lw[N][G]{u}z{ﬁ} (4.45)

with

o) )
~W*Q5
(4.46)
and {(see Eq. 4.41)
— ‘ — | - - . q -
(TR g zu=~zM_u
-W+ 03 ﬂ:-—wz
:...l: (3l+32)MwF
2z
Q5 -Q, (4.47)
iw t
Note that terms with € © have been dropped since it can be shown that they

are also exponentially damped.
Finally, the condition O+ = 0, (see Eq. 4.36) which defines the value

of Ao” can be rewritten as (see Eg. 4.42)
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LUt [G ] {uj=0

{4.48)
4.5 The Vector {W3} and the Function A(t2)
Consider the vector {W3}. Combining Egs. 4.12, 4.39, and 4.43 yields
‘32 z ] { }::
2 (W} + L)W} 4 N LRI { Wy {253 =0
atb
(4.49)

with (noting that BA/Etl = 0, see Eq. 4.40)

+[& ) (2 IWg+ 2w JraLel{w)
+{¢s)

- Zi—-ﬁ.(wz} + Zﬁi—ﬁz{w.} F [5{]5%0{\;\%2}

+ ALTEW +{G)

=2 Req]{{f;”} eiw'fo+ {?;3)} eiswi},]

(4.50)

where by using the explicit expression for {C3} {see Eq. 4.112):
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)

[2)]= 2[w_;_%{u}+2¢w§é{u}

+iw[q](BIUj+A{v})
+ ALTETA{UY + 1A% A7

{27} = {H}A°

In order to avoid secular terms the condition

Ly 2Y)=0

must be satisfied. By making use of Eg. 4.48, this yields

2iwiU{ul (22 +§£)+ (wLu [61{V]A

A LU TE]{ulA +Lua (HAA =0

This equation yields

2B _
>z, 7'
and
RA LBA+FAN=0
3t2+ﬁA rA
where

= - (cw LU [&}{v] +A, LU TET fu])

ol
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(4.

(4.
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51}

52)

53)

54)

55)

56)

57)



LU {H.} (4.58)

¢
i

with

(4.59)
In explicit form
A= l2w(1-Uu*)
5= [iw (-G Z.T )+ N\, (-20)]
= ] - ~4
y=x 3 [C/+(Gr= Cy) U™ G2l J (4.60)
From Eg. 4.60, it is obvious that o, B,and 7 are imaginary. That is
Real o =0
Real B=0
Real (F‘O (4.61)
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Thus by setting

f
/A‘: LAI 62 (4.62)
Eguation 4.56 yields
2| Al (4.63)
| =0
a‘tz

+ ﬁx l/“— (4.64)

where the following relations have been used (see Eq. 4.61)

atz

= ¢

= L r (4.65)

Thus A is given by Eq. 4.62 with lAi independent of t2 and

l‘tm
tmt

p= (Pt YIAP ) H+ % (4.66)

with @o a function of t3, t4, and so on.

Finally, since Egs. 4.55 and 4.56 are satisfied, then Eq. 4.53 is also

satisfied and the vector {WB} does not contain secular terms and is given by

{N3}:( C {U} T {P;”})éwi P(;)} (3wt (4.67)

with

{P;”}: [N”'ﬁ”} (4.68)
{ R} =‘[“‘Ioo’ [1]+ [ ]+, [E]j'{ %‘j)} 4.69)

Note that, according to Egs. 4.40 and 4.55

{ & {u éwffr %%T {u*}éiwto (4.70)
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and that combining Egs. 4.51, 4.55, and 4.68

(R} = 200 [N]{ul 28 + [N (20 [EHVI+ALTEu])A
+ INJ{u AR cw INT[G T{u}B

- (R1Z +HRIa+{RIAA™ V] B

(4.71)
with {V} given by Eg. 4.45 and

{E}:Zﬁw [NT{uj

(B} = IN] (¢ [G3VI+ AL TET{u})
=[N (- [§INTIG ] + AL [E] ) u]

(71=INT{R] (2.72

Note the similarity of the definition of &) E; ;-(Eqs. 4.57 to 4.59) and
{r 1, {PB} and {pY},

4.6 The Vector {W4} and the Equation for B

Consider the vector {w4}. Combining Egs. 4.13, 4.39, 4.44, and 4.67
yields, by taking into account that aA/Btl = 0 (Eq. 4.40 and 3B/8tl = O
(Eg. 4.55 and Eg. 4.70),

5% W+ L@ T (W} + A [E] {W] +{ 2] =0 (4.73)
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with {{C4} is explicitly defined in Eg. 4.118)

(2= 2 at{"” (az at:at){w}

Z

+(2-2 ﬁ)(wh[&](ﬁ{w]

2 -to Qt 3 B't'

2 (W2 ] ) A TEN W +{c)
_zReal[Zzw 2¢ {u} “h, 20 (2 H*é?{"}) h
e2i0 2 116" 1 [6] (c {u) + Y )€
1130 [GI1R7) €™ (] {uf 24 e*
1L TEY (fu) B+ (V) A )E% ((h) A
+ {KIA*) €7 (M) (2448 + 4787 )
k) Y]

(4.74)
W _iwto 3) 43w ai -iw ¥ -iswt,
{Zq_} Z, C +Z(4)€ t* Z,C 1"‘:l-z? ‘ (4.75)
with
Ze' = 3w[GI{P7]+{H) AB KA
| {(4.76)
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and (see Eg. 4.69)

+iwld] [ {u) + R} 2+ R4
+{BIAA+{VIB] + [§]{u} 22 +NlE]
(({u}B+{V}A)+{H] (2B AT )+ {K] A1

=200 (5}@'+§£ *f"é ){U} + (1w [6]{V]

s [E]{U] ) B +{H] (244 +AB")
+ (200 (V}+iw[GI{ R} + [é]{u})—g%
+ (o G {R ] +ALTE]TV] )A

+ ((wlGT{R}+{KE)AAT

+iwl[g1{ufc (4.77)
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In order to avoid secular terms for W 4}, the condition

LUt {2f=0

(4.78)
must be satisfied. Combining Egs. 4.48, 4.77, and 4.78 vields
21 (20 ;2B L 2A |\ BR+F (2ANE + AR*
& (25428 128 )1Bpf (2AK'5 +4'")]
— -— =z %
+0<’[9£ +BA+TAR ]=0
912 (4.79)

with &} 'é", and 7 given by Egs. 4.57 to 4.59 and

L= LU (2iw{Vi+inlg]{R])

:~2w2LULJ([N][é]+ [G][N] ){US (4.80)

=gl (ML[ET{v)+(w i@l {R ] )

7 W [ewn, (TETINI[G]+ (BN (')

- L [GJ[N][C:{J[N][QJ] (4.81)
F/== LUy ((kj+cw [&1(R})
_ (4.82)
= LU ({KJ+ W[N] fi ] )
Equation 4.80 is satisfied by
{(4.83)

E_.C_. =0
ot
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and

Z[(ZB+28 |+ BB +F (2448

ot, 31:3
+AZB")]+SZ'[:§1+§'A
+ 5 AAT =0

{(4.84)

The solution for Eq. 4.84 is discussed in Subsection 4.7. Once this eguation

is satisfied, the solution for Eg. 4.73 is given by

(W)= (ofuy + P01 E75% ooy

with

(R} =IN]{Z] 4.0

and

{Pj?*[“?tdz[l']w‘[:f?f] + A, [E]J-'[ff’} (4.87)

4.7 The Functions B(tz) and A(t2,t3)

In this subsection, the solution for Eq. 4.84 is discussed. 2As shown

below, this yields the dependence of B upon t2 and of A upon t3. Letting

B = IDA (4.88)

and combining with Eg. 4.84 yields

o1




2 [(bZA +4 2L J1BAb+T (2AA bt AXE)]

7 2A L Z'T2A B/ rA 1=0
+<>19JE3 + [a_tz-rBA’r?fAA ]

or by using the differential equation for A (Eqg. 4.56)

(4.89)

X[Af-% FFAR b8 ]+ 224 BB

— /! T 2
+A (F-F)AA =0
Note that &; E} and ?iare imaginary (Eq. 4.61).

to Egs. 4.80 to 4.82, o’is real; whereas

are imaginary.

2b L FAR (btb ez bk + B FAN0
with
w x'= = A =) 7@
B=§“(ﬁ’ﬁ)*§:(ﬁx“51)
~ A >l =1 =
F=Z (FoF)=% (0 0)
Note that®

&
According to Eg. 4.62, %n A = in lAi + i{¢ + 2nm).
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(4.90)

On the other hand, according

(4.91)

(4.92)

(4.93)

(4.94)



Thus, by setting

b:bR+LbI

and by separating real and imaginary parts, one obtains

208 o 2 fn A+ +F 1A= 0

@bt oK IA b +2L =0
21, E;t3
In order to avoid secular terms for bR' the condition

o A r A
;};Aéh hql + ﬁg 1’J’IA+ 0

must be satisfied. Then Eg. 4.96 reduces to

abR:O
79~t2

which implies that bR is an arbitrary function of t3, t4, and so on.

other hand, Eq. 4.98 can be rewritten as
~ o 3
m@ +B 1AL+ 1AP=0
oT3

The solution for Eq. 4.100 is given by

o 2{;7£;_V2
A= (- +ke )
&
where k is an arbitrary function of t4, ts, N

{(4.95)

{(4.96}

(4.97)

{4.98)

(4.929)

On the

(4.100}

(4.101)

Next, consider Eg. 4.97, which can be rewritten as (see Egq. 4.66)
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2bs Y o 9 2 [A] 330.,_
hu(@!/\wg 2“"’4'3@*?&“0

° 3

This equation yields secular terms (of type t2) unless

_9__‘f,_= -2 ajI [A[z/:)&
273

and "super-secular terms" (of type t;) unless

2, 141 22 = 0

Equation 4.103 is satisfied by

br= 0

and

2% _,

st

On the other hand, Eqg. 4.104 can be satisfied only if

2lA] _
>t =0

{steady—-state case) since i;# 0. Then Eg. 4.102 reduces to

b1 _
ot: =0

which implies that bI is an arbitrary function of t t4, and so on.

3!
particular, one can choose

bx=0

54

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)
In

(4.109)



Summarizing, Eg. 4.74 can be solved by

bEO | . (4.110)

‘ff‘the condition

/—\:: - ’{g'/af; (limit cycle) (4.111)

is satisfied. On the other hand, during the transient response the multiple
time scaling technique can predict the variation of the amplitude [AI but is
not general enough to eliminate the secular terms by a suitable change of the

frequency with time. An interpretation of this result is given in Subsection 4.9.

4.8 The Nonlinear Terms

In this subsection an explicit expression for {C3} and {C4} is derived.
Consider first, {c3}. Combining Eqs. 4.8 and 4.39 yields

Gt

Cu WT,3 + C 2 Wiy W-l-zz
{c.}

3
Car Wil wy t Caz Wy

;3w to 2 z z L6 14 Cy+C; ¢
ASGL {CM’C, U S}T.'BAA*@ { ! iui
CqUTCuu gﬂfuﬂi

i

Aieakfl{'o{Hb} _fAzA,qe[w{:u{Hli (4.112)

Co t CaU?
ol +Can i (4.113)
24 22

with

i

[H.]

{Hl}: 3 (HD} (4.114)

Next, consider {C4}; combining Egs. 4.9, 4.39, and 4.44 yields

{ Cd - {C“ y V\r”z Mz ' Ch (lew"‘z‘tz V‘ﬁ'» \/\rm V\.Izz)
Cay (20, W Way W2 Wo) 7 Caz 3 Wy W

SEAR A

(4.115)
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where, setting for convenience

Wto=7
(4.116)

El, 62, Cl and C2 are given by (note that u* = u and v* = - v)

523 (A A e (et ypre™)
1 e[ (Bt B*e™ ) (Au e+ Atu ec)” .
12(A™+ AS" ) (Aue's A"y °)(BudS By &)
= (i 1Cal?) 3 (AT + g7 (BEL B S
“2Refs (Gt Call) (4B €7 (244%8 143" €]
3= Cu [2 (A€ A€ ) (BESBE™) (Au% pru 6
+ (A p*e T J(Bue+B*u et ) ]
1Ca 3 (Aue ™+ AU e [ (Bue™s pruc)
*(GutCall)s (A€ tp%e ) (BeLp ")
2Re[3 (G i+ Coati® ) [A™B €4 (2448 + A7 )e]

Ji= 205 (AE T pe ) AUE ™ A7 u 6 prre” 4yd)
S 2Cuv(AY e ) (fet-Ae )
=2Ke‘[2 CaUuv (A*e”% AAreT) ]
T2 = G (A'Ga%e ) (Ave v e™y)
13 Caa (AUt A UE™ S (Av e e’
=2 Re. [( Cia+3 Caa ) V(AR5 AAET)]

(4.117)
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Collecting terms

{C4§=zf<ea[{H J LA 56 % (2AAB+ATB) € 5]
K} (475 par e )]

with {Hl} given by Eq. 4.114 and

{K§: {ZjiiCZZ HZ}U_:;%{H"}U— (4.119)

4.9 Comparison with Existing Results

{(4.118)

Consider the amplitude of the limit cycle given by Eg. 4.111. Com~
bining Eg. 4.111 and Eq. 4.93 yields

. _B-B
A Ty

(4.120)
where B, Y, B' and Y' are given by Egs

. 4.81 and 4.82.

Note that Egs. 4.80
to 4.82 can be rewritten in simple form as

'z 200 (LVh fub+ U {vi)

/3 __’[_/\. Lvu[E]{u}+LuJ[};]{v})moL\/J[%](vﬂ

X]:;—L‘(LUJ(K JrLVJ{Hf (4.121)

where

(VY =twiUg[G][N]=L0,-V]

with v given by Eq. 4.47.

(4.122)
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In explicit form

-1

CX = “'lll.UJ Q 6; = *7?5 i}-

—-— ) —} 9
LB =-M2T+iw, vz_a_gy-

Sy
|

=20V (C2-2C~-3C,. A7)
(4.123)
Combining Egs. 4.60 and 4.123 yields

A o(’(ﬁi—ﬁ )= 20wV (=20~ w3 V)(1+0%)  a.129)

oL (F) )z Al AV[3CH(14207) Cem(24T Y, oo

o -—3(:;;&‘}
Thus combining Eqs. 4.120, 4.124, and 4.125

/‘—-_

+(|+2u ) Cia = (2+U?) ¢y, (4.126)
“3“ sz] (]‘f“‘wgzv/zf\.z)

This result is equal to the one given for ¥/2 in Ref. 1, except for the

factor

By L w3 A
- —_ Ve e — 2
F ”mz‘“gz e ey
]

2/, Qz-_Qz 8 3)@3 (4.127)

which is probably related to the fact that Ao (Eg. 4.38) is different from

A, (Eq. A.13)

&£

A =N[4 G, 31@9)]

Further analysis is needed.

(4.128)
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Finally, consider a comparison of the coefficients B and Y used in
Section 2 of Ref. 2 and the coefficients E; ?} B, and Y used here. Note that
according to Egs. 2.37 to 2.39 of Section 2, Ref., 2

A= 20w (I-u*)+g,-4-u’
B=F x2u

¥ = L [30,+ (U 2UU%)Ca - (U UUR) G - 3UPUTG, )

(4.129
where u is given by (see Egs. 2.41 and 2.42 of Ref. 2)
S . =] 31 + a
& -t tan ( .Qz—az wF)
u:" e e 2 ﬂ|
8: (4.130)
Assuming
0 <§,<g, <]
or

9,= €4,
g :Eg {4.131)

Equation 4.130 vyields

u={1- e Gt )i,

S U tEV

{4.132)
with G'given by Eq. 4.33 and ;'given by Eq. 4.47.
By using Egs. 4.131 and 4.132, Eg. 4.129 yields
A= (2w (1-07)-gl4a@uUl
0(@:-—2 (u+EV)
— — 4
drT—B [C:)+<C12”Cz|)u -C2 U J
{4.133)

+ZE\7 a [CIZ‘QCm“ 3C23U2]+‘ e
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=/ (4.134)
o+

This vyields

: 2!
Xr[}‘go‘—:ﬂf‘" ']

= =iz ] g
J/:(ok{,ﬁgo(d»);__“_.é;__%..) (4.135)
:(‘f-l'f’g"(i{‘g)*

= 5; + & é;'f
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SECTION 5

SUMMARY AND CONCLUSIONS

5.1 Summary

In this report, the results obtained in Refs. 1 and 2 have been extended
to include the following cases:

1. The effect of fifth-order nonlinear terms.

2. Flutter-buckling interaction.

3. Small damping terms.

The results of including these three aspects are discussed in this

section.

5.2 Fifth~Order Nonlinear Terms

In Section 2, the analysis is extended to include fifth-order nonlinear
terms. The main result of the new analysis is that the curve which gives the

limit—-cycle amplitude as a function of A can "bend".

More specifically, the third-order analysis shows that for (stabilizing)
third-order nonlinear terms, there exists a stable limit cycle for A greatér
than a critical value. The fifth-order analysis shows that destabilizing non-
linear terms has the effect that the curve amplitude versus A, "bends” to
the left, creating a second branch of the éurve which represents an unstable

limit cycle.

It should be noted that in order to obtain the "bending" behavior, the
parameter A is expanded in terms of €2 (see Eq. 2.10). The coefficient A4
(which yields the bending of the curve amplitude versus M) is obtained (see Sub-
section 2.5) by physical assumption (without any mathematical motivation). In
order to verify the correctness of this assumption, the analysis is applied to
a problem for which a limit-cycle solution can be easily found. The eguation
considered in Appendix B was "constructed" from the desired solution. The

results show that the assumption yields the correct solution.

Finally, the method is compared with the "two time-scaling” technigue
(Refs. 8 and 9), which was modified here in order to make it sufficiently versa-

tile.
101




The results obtained with the two methods (multiple-time=-scaling and modified

two-time~scaling) are the same (see Subsection B.6).

5.3 Flutter-Buckling Interaction

In Section 4, the analysis is extended to include the behavior of the
plate in the region of interaction of flutter with buckling. At the inter-
section of the flutter-stability boundary with the buckling-stability boundary,
the flutter freqﬁency is equal to zero (see Section 1). Thus, disregarding
the damped part, the solution does not depend upon to' Hence, a completely

new analysis is necessary.

The result of the new analysis can be summarized as follows. In order
to avoid secular terms in the third-order system, one obtains the dependence
of the solution on tl. This is given in terms of Jacobian elliptic functions.
Then in order to avoid secular terms in the fourth-order system, one obtains
the amplitude of the limit cycle. It should be noted that during the transient,
it is impossible to eliminate all of the secular terms. By eliminating the
most important ones, the variation of the amplitude with t2 can be obtained.
Further exploration is needed in order to understand the reason that the method
failed in this case. A similar behavior is observed for small damping coef-

ficients for which a possible explanation is given in Subsection 5.4.

5.4 Small Damping Coefficients

In Section 4, the analysis is reformulated by assuming that the damping
coefficients are very small (of order €). The most important results are
summarized here. The second-order system yields the value of A which makes
the system unstable. This value is (neglecting terms of order gi) equal to
the one obtained in Ref. 2. Thus, avoiding secular terms in the third-order

system yvields an equation for the amplitude as a function of t_, whose solu-

2
tion is periodic (the period depends upon the amplitude).

Finally, by avoiding the secular terms of the fourth-order, one obtains

the limit-cycle amplitude.* This amplitude is very close to the one obtained

- .
This is in contrast to the results obtained in Ref. 2 where a limit-cycle be-

havior was obtained by avoiding secular terms in the third-order system.
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in Ref. 1, the only difference being a constant close to unity. However, it
should be noted that during the transient, the secular terms cannot be elimi-

nated completely. An interpretation of this is given in the following.

Consider the function given by Egs. 2.31, 2.32, and 2.33,

il - (Be- Gﬁ¥+h&MHf]
A=1A] e (5.1)

R ~Y2
PﬂffJ

with

1A|=[:3—§;-rke

For small damping terms (of order €) BR and YR are also of order € (see

{5.2)

Subsection 4.9); whereas BI and BI are of order one. Thus setting

XR _ EJ} (5.3)

Equations 5.1 and 5.2 can be rewritten as

_ (g, - B 2 g, 1A1+ %]
pp el R e g AR
T &fat]"/‘
IAI-[—;B:*KE
R

It is known that a term such as

Iz
e;gﬁ,@nl/ll _ QEL-FH) (5.6

has no asymptotic expansion. Thus, the presence of the term given by Eg. 5.6

(5.5}

in the solution could be the reason that, as mentioned above, during the
transient it is impossible to avoid all the secular terms. Further exploration

to verify this interpretation is needed.
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5.5 Pinal Remarks

The results obtained here bring a new understanding of the multiple-
time~scaling technique. However, the limitation mentioned in Subsections 5.3
and 5.4 need further exploration. Probably a combination of multiple-time
scaling and the two-time-scaling technique (that is, a multiple~time scaling
with the stretching of all the scales) might be sufficiently flexible to avoid
all the secular terms. PFurther effort is also needed to extend the results
obtained here to the case of many modes. Finally, numerical application should
be done in order to compare the results of this analysis with those obtained

by using a different approach.
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APPENDIX A

THE LINEAR CASE

A.l1 Introduction

As mentioned in Section 1, a clear understanding of the linearized
panel-flutter problem is necessary in order to study the nonlinear panel
flutter. The results of the linearized analysis are particularly important
for the formulation of the flutter-buckling interaction. In this appendix,

the linearized problem is studied in detail.

The linearized equation of the N-mode panel flutter are obtained from

Eg. 1.3 by dropping the nonlinear terms:

. . N
Wn +8nwn+-§2n Wn 'f?\g‘enf\/\(?r-O (A.1)

In particular, for the two-mode case, Eg. 1.8 yields

\Xl, + glwl +_Q,2W. -AW,=0

Wy §aWz + O W, + /AW, =0

(A.2)
with A given by Eq. 1.10. The region of stability of Eq. A.2 is determined in
Subsections A.2, A.3, and A.4. Particular emphasis is given to the inter-
section of the flutter boundary with the buckling boundary. The results cb-
tained are applied in Subsection A.5 to the case of an infinite simply-supported
plate for which (see Ref. 2, Appendix A)

=0 (1-2)
n = n;o th

{a.3)

9n=G*n°F
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where N is the applied membrane force and

: _an: n4 ]'[4

G:(KMAU%
F=8 1"

(A.4)
The solution for Eq. A.2 on the flutter boundary and at the flutter-
buckling~intersection point is discussed in Subsections A.6 and A.7, respec-

tively. Purthermore, some generalizations are discussed in Subsection A.8.

A.2 General Formulation - Buckling and Flutter

As is well known, the solution for Eg. A.2 is a linear combination of

particular solutions of the form

u, | ¢t
{xj;{u < (-5

Combining Egs. A.2 and A.5 yields the algebraic system connected to the differ-
ential system given by Eg. A.2. The algebraic system, written in matrix form,

is given by
2 - u
P g+ M '120 (A.6)

A pegpra,] U

The characteristic values of p are obtained by solving the characteristic equa-
tion. The characteristic equation of this system is obtained by setting the

determinant of the coefficients equal to zero, which yields

praap rbpiacprd=0
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with
a=4+3.
b=Q/+Q5 44,
=40 +3.Q]
d =005+ N ®.8)

The stability boundary is the line separating a region of stable solu-
tion (real p < 0) and a region of unstable solution (real p > 0); that is the
line on which real p = 0. Thus, the stability boundary is obtained by setting
p = iw and equating both real and imaginary parts of Eq. A.7 to zero. This
yields

W (21+0:+49,)wt (QQT+N)=0 ®.9)
034[(3]+32)wz~’(3,02+8zﬂf)]=0 (3.10)

The second equation yields two possibilities: assuming that w # 0 yields

w;: 31[221'8:Q|2 @ .11)
g t3d.

and the first

2

Ke=-0f+ (20403199, ) W3 -0,

i

i

- (@F-00) (wi-02)+8. 8.0y

- 3|~O~§ :Q? ® .-Q: z 12 * 2
'( 8;1331 -Qll(ji g“:ggil ”‘Qz)*glg;l«)':

or

z 84. -QF
Aoy g (¥ g3

®.13)
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The subscript F stands for flutter*. Equation A.12 gives the flutter value for

the dynamic pressure parameter A, and Eq. A.ll gives the flutter frequency.
Consider next, the second possibility in Eg. A.10
wB:O (A.14)
Combining with Eq. A.9 yields
- 00’ (A.15)
_/\-B_ -—(2| 2

The subscript'B has been used because Eg. A.l5 represents the buckling condi-

tion**, The buckling frequency is zero.

A.3 General Study of Stability

The conditions for the stability of the characteristic equation given

by Egq. A.7 are: a > 0, b > 0, ¢ > 0, d > 0, and

c*-abe +a3d <0 (2.16)

The first condition yields

8|1_32>O (A.17)

In the following, it is assumed that = > 0 so that this condition is always

satisfied. The second, third, and fourth conditions yield
2 2 (A.18)
‘O'l +‘O'2 +8lgz >0
2 z
3!Q2+gzal >0 (A.19)

Qi+ >0

(A.20)

k4
FPlutter is an instability of vibration with growing amplitude; that is p =

B + iw with B > 0. The flutter boundary is defined by B = O.
%3

Buckling is an instability with exponential growth;that is p is real and
positive. The buckling boundary is defined by p = O.
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Finally, Eg. A.16 may be rewritten as

b o

which yields

3.0, L0 Q:+8.Q, *10*03 A
(fféllz:gz )..(Q +Qz+3gz)(3gf)+ ;}Q )+_/\. +QTO<0 @22

orx

2 a2 8.3+ 4.00 ) ot (4 18.Q) %
A_<(ﬂ‘+ﬂz+g|32)( 3:“'82 )-Q--Qz L 3,1‘83 v}

:-(M,Qz .Z'Q:’fgzauz_. z
avg )0
' 9,0:+8.Q°

8\1 '

P T

(A.23)

which yields

2 29, |2 ) 3,Q:+8.Q)
A< (8|+8z)2(£22 Q|)+8lgz gs+8z

It should be noted that this condition corresponds to the flutter con-

(A.24)

dition as is seen by comparing Egs. A.13 and A-24. sSimilarly, comparing
Egs. A.15 and A.20 shows that the condition @ > O corresponds to the buckling

s . s . 2
condition. Finally, the condition ¢ > 0 corresponds to the condition wF >0

(compare Egs. A.26 and A.19).

In order to determine the region of stability, it is convenient tec f£ind
the conditions under which AF = AB. The remainder of Subsection 4.3 is de~-
voted to finding these conditions. Using Egs. A.12 and A.1l5, yields*

_/\_‘F -A; = We (QI+Q7+§4,-wf ) =0 (.25)

ol . . . ‘o 2 2
This corresponds to satisfying simultaneously the conditions ¢ = abc - a d =

0, and d = O, which implies that c(c - ab) = 0.
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Thus, there exist two intersecting points defined by

W = 8:£1?T8L£12
X

’Lgi%&* 3,4.=9

and

A.4 The Region of Stability in the A,N Plane

=0

In the preceding subsection, the conditions for the stability of

characteristic equation were derived.

b > 0, or Eq. A.18
z 2
-Ql +-O'2 +glgz >0

¢ » 0, or Eq. A.19,

2 2
g.ﬁlz t 81£1|‘> 0
d » 0, or Eg. A.20
Z 2 - 2 2

c2 - abc + a2d < 0, or Egq. A.24

j\? < J«ff - 3:32,

3'1'32

= A; are either Eg. A.26

Finally, the conditions for-/\F

9.Q,+ 9.Q5=0

or Bg. £.27

8.89.:38,9, +8,9.20

{(intersection 1)

{intersection 2)

These conditions are:
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(condition b)

{(condition c)

(buckling condition)

- )+

(flutter condition)

{(intersection 1)

(intersection 2)

(A.26)

(7.27)

the

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)



In the following, these equations are rewritten by expressing Qi and

2 . . .
92 in terms of the membrane-compression force N, according to Egq. A.2,

Q=00 ( |—~%|)

ﬂzzﬂzo(l‘-!}l‘ ) (.34)

2
Consider first, condition b and condition c¢. Combining Egs. A.28, A.29, and

A.34 yields

b= ﬂlb('"’“")‘*‘-ﬂh +3.3,>0 (2.35)

C =32Q,2°((~%‘)+ g‘Q;({-—E—Z)>D (A.36)
or

N < Nb (5.37)
and

N < Ne (5.38)
with

N, = 20400488, \ o I T Rat3® N,

N z_bh \ (A.39)
o5 0 I + Ky

Nc: 81-(}0"3\?2:1 N‘I 9“"?&1 N| (2.40)
31_(‘)_“-}3'&1“7\].'; 8+ Ry

where the following definitions have been used:

Q5 . Q5 N, .Q=_&~. ZM}.  (A.41)
Ko™ ") R 0% N f 9 o

Consider next, the buckling and the flutter conditions. Combining Egs. A.30

and A.34 yields
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N> Ng= Q;QZO(;__’\_’_‘)()-%)
- _N _p Ny 4
- - ( -K'];)(RSL RN N )-Q“, (3.42)
Similarly, combining Egs. A.31 and A.34 yields
* 2 3.31 2 N 2 z
/ <AF”@;§}[Q|»(“W,)°QZD( I“J,j\,:)]
2 _L\/_ 2 _'-_N-
+3,3, 3,Qz°“ N‘)+8‘Q““ Nn)
@x"'az
- 6 _ (- ~N~ 2
‘{(sﬂ)z[(l Ra)- (1~ Ry) N']
) N 4
+ B[ (04Ra)- (0RuT] 01
(A.43)

(1)

Finally, the two intersection conditions define the two values for N (N and

N{ZE for intersections 1 and 2, respectively). Since the equation for inter-
section 1, Eq. A.32, is equal to the equation ¢ = 0 (see Eq. A.36), then

necessarily

(17 .
N" = Ne < ; (A.44)

(2)

with N, given by Eq. A.40. 1In order to find N combine Egs. A.33 and A.34

@ 2)

3, ["‘%} ] +8. Q:b[l—-%z ]+8,82(8ﬁ §.)=0 (A.45)
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or

N(z): 8"(2?‘, +8ZQ;+ 3.8;(3,*’3;)1\]'
§,00+8,05 -

| + GJELI‘*€?2(11'@,) ﬁJ
| + BRN (A.46)

A.5 The Region of Stability in the A,N Plane for an

Infinite Plate

For an infinite plate, according to Eq. A.4, one has

=22 g DL N (2.47)
p_n. Qh RN ﬂ‘:; N. 4
whereas
Q-9 . G+I6F
3 GtF

ranges from 1 (F = 0) to 16 (G = 0). Thus, Egs. A.39, A.40, A.44, and A.45

become

N(l) NC 9+ [6

el —

N, N e+ 4

N*_ 16641 o= 071
N, 40 +1 40+ |

(2.48)

Similarly, Egs. A.42 and A.43 yield,
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Ne _ —oaN N
== (16 2ON,+4Nf

2 N N
___-!_\-_E__:__Q_,z(|5_~z_l\j_)2+8z Q-4 +(16-4+%)
s (1) N, o+ a0

(1) (2)

: . . 2
The gquantities N _, Nc’ N , and N ,versus 0 are plotted in Fig. A.l for g =0 and

b
2 4 ..
g2 = ,1. This figure shows that the influence of g = (glgz)/ﬂ is negligible,

whereas the influence of 0 = gz/gl is strongly significant. In other words,
the ratio of the two damping coefficients is important, whereas the influence

of g2 itself is generally negligible.*
By examining Fig. A.l, it can be noted that in the range 6 = 1 to 6 = 16**:

(a) condition ¢ is more restrictive than condition b, Nc< Nb

(b) intersection.l corresponds to a lower value of N than

intersection 2, N(l) (2)

{c) the fact that N(l) = N implies that at the intersection of

(l)

<N

the flutter boundary w1th the buckling boundary at N = N
the flutter frequency, which goes to zero with the coefficient c,

is equal to zero, since N = Nc

The stability region in the A,N plane is shown (for g = 0 and g = .1)
in Figs. A.2, A.3, and A.4 for 6 = 1, 4, and 16, respectively.

A.6 Solution for the Flutter Boundary

In the preceding subsections, it was shown that for

/\ /\. ﬁ___ _Q -Q7) QIQ:+82QT (A.50)
3\ 8 g&} 3,1'82

%
In the usual physical problems, g2 = (glgz)/Qi is less than 1/10.

ke
It shouLd be noted that this result is true only for 6 > 1 (i.e., g2 > gl

and g > 0). The case 6 < 1,as well as the case 6 = 1, 92 = 0, is discussed
in Subsection A.8.
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and

Wy = 9.!81?:88:(2, >0 (N<Nc) (3.51)

the linear system is on the flutter boundary (that is, between damped and

growing oscillations). In this section, the solution to the linear system

on the flutter boundary is described in detail.

As shown in Subsection A.2, if Xz = A;, the characteristic equation
(Eg. A.6) has two imaginary roots given by
- p= o (QF (5.52)

The other two roots can be found by dividing the characteristic equation by
2

p- o+ w;, which yields*
. 3.00 + 4.0}
+( P+ +
/P 8‘+82 /P 8. +82

Thus, the second pair of roots is given by

3.9.=0 (A.53)

- -.&Li&i.+ [ 35 14, . 2
=TT 2 “‘J‘%ﬁ‘;‘%*%?{(@ag

=~ 8.1“32 =) j_é‘.ﬁ*g&f _( 81'”81 )2

2 9t 2 (a.54)

*Note that
(p+w3) [#+19.49.) P+ (Q1+Q319,%,- W7 ) ]
= P+ (G +3)P7H Q183 )P G*32) w;rw); (3133 w%)

and (using Egs. A.1ll and A.13)

z 2 z Q'+ ,():
0710, +§F. -0 :_%J?%— "3

We (4% 14,2, - w2) =Nt 0,Q;
This is the same as saying that

(prg)lprrap-(b-g)]= p*+ ap>sbprepd

since

C_l"abc +azd =0
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These form a complex conjugate pair of roots with a negative real part. These

roots are complex conjugates if

8‘%2' :gzﬂz ..(8';82) >0 (A.55)
] 3
i.e., if
2 2 gl' 2%
8,04 +4.0% - B ) (9,4,
N>N: 8 2+8Q N2L (8 g)N'
ng'°+ 8-;Wiﬂzo
1+0 _
_ __|+6Ra- g (z5) ! Q)N
I+ GRwN (A.56)
In particular, for a simply-supported plate,
_.i_ﬁﬁu 9)*
N'___ /+16 80 N, (A.57)

| + 40
It can be noted that for g2 <.land 1 <696 < 1s, Nl is always greater than Nc;
1 . .
but N~ = Nc for 6 = 1. Since N < N, (see Eq. A.51) the roots .given by Eq. A.54

are always a complex conjugate pair of roots with a negative real part.

Thus, on the flutter boundary, the characteristic equation has two
imaginary roots p = i.in and two damped roots; disregarding the damped part,
the solution can be written as

)= {uae™ e furpe™

where A is an arbitrary complex constant and U is the eigenvector of Eg. A.6

with p = iw_ and is given by

{U}={&} (A.59)
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with#*

, L)C
uz%:—/—gl—e (3.60)

where

X=- tar! ( ‘8?_87‘ ) (A.61)

Finally, it is convenient to mention that the left eigenvector @B%g,

which is needed in the nonlinear analysis,(see Subsection 1.3) is given by

LUt =L, - o2

A.7 The Solution at the Interaction Point

In the preceding subsections, it was shown that the stability region is
limited by the conditions

N o< _/\ZF (N) (£lutter)

(A.63a)

N /\28“\” (buckling)

(A.63b)

There exists an interaction point (which is part of the boundary of the

*
In fact

_ W, _ - OJz'fig ) +£22 l j ~
U= F R ] . (2 Tl OJF
W2 A\ 8 +3 g }

2 g.ﬁ?z
L[ o g et W
jL [:JJQJ ( n)—fg,a%:] 62

1t
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2

. . 2 2
stability region) where A” = AF a

nd A

2 . -
= AB’ simultaneously. These conditions

are equivalent to the conditions

c-abctad=0 , d=o0 (A.64)
on the coefficients of the characteristic equation. Equation A.64 imnlies
that at the interaction point, either ¢ = ab, or ¢ = 0. In Subsection A.5, it
was shown (for an infinite plate) that at the interaction voint c¢ = 0. The
general conditions under which ¢ = 0 at the interaction point are discussed in
Subsection A.8. 1In the following, the solution of the linear system at the in-
teraction point is studied in detail.  The conditions 4 = 0 and ¢ = 0 corres-

pond to {(see Egs. A.32 and A.44)

1\1~ N - N(l)_ g: -(2)20 t 3,-(220
TV - 2 2
81'(2ID+ 81-(220 —,,:IL;

} e 2~z - NY o N
_/\-'/\'* -_02‘(7'! :"-Qwﬂu: (l _N-:}(l —_—) (A.65)

Since ¢ = d = 0, Eq. A.7 reduces to

P*+(4,44. )P+ (Q/+Q;+83,) P=0 (A.66)

which has a double root p = 0 and a pair of roots given by

1 2 . z 2 - 2
/p:——a—}—i—iLjﬂ,-+ﬂz~(L'zai) (A.67)

*
These roots are complex conjugate for 0 # 1, real and double for 6 =1; in

d
These roots are complex conjugates if
2 _ 1 d=
Jole o L S N
That is, if

-9, 2 (I- 9)
Qm on 8 g) I"’R-Q_g 49 N
|

2 N 1:
Qp + 'f)zb 1+ Rn
In particular, for a 51mply—supported plate

n | 2(,
N =-'5°['7 g ]N,
)

Note that for 1 <

N >-h]”:

< 16; N" > NC; thus, in this case the roots are complex con-

jugates. But N" = Nc for ® = 1. 1In this case the radical is equal to zero and
the roots reduce to a double real negative root given by p = —2gl (note that 9, =
Og,= 9, 122



either case, they have negative real parts. Disregarding the damped part, the

solution can be written as

(W] =A{u] + A ({ul+ul)

where A and A, are two arbitrary constants and U and U, are given by®

1 1

ful={a) (ul={g] .

NEN _J?.@:__gzu 4
us jﬂz U= oL T Q% A (2.70)

Finally, it is convenient to mention that the left eigenvector Lﬂ%1;

with

which is needed in the nonlinear analysis is given by (see Subsection 1.3)

LuLJ=L';‘UJ (A.71)

* . }
In fact, setting Wi } = { S{.}(o in Eq. A.2 yields
W U u,

yields
0 +4, (1%0) +Q (£+0) -A(EUTUI=D

0% Gatu+0) + O (turU )+ A (£+0)=0
St )

a
s

or (note that 8,QZ+81.QT=O and A = —Q.’;Qi:

z _O_‘
u=~%—=-ﬁ“§=‘ EI:“J%:L

o By=bo g8 g g !
U|"' .ﬂzzu‘—_/\. - 8']@,Q2—J3'82—Q§ - gl \Q,Qz‘
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A.8 General Remarks

Some of the results obtained in the preceding subsections are valid only
for the simply-supported plate. 1In this subsection, the results are extended to
s 2 2 .
the general case under the conditions that Ql and QZ are given by Eg. A.3

with

N; >N2 (A.72)

where N_ is the first buckling load (Euler load) and N_ is the second one, and

1 2
9*>0 (A.73)
It may be noted that the quantities RN’ R.Q and 6, given by Eg. A.41 are
positive and furthermore, that according to Egq. A.72
Rn >RN
Consider Egs. A.39, A.40, A.44, and A.46
t
Nc: N”_ 9 + Pﬂ.
N, N, 91’ RN
2)
N - Rn@ + | +gz 9 + |
Ni  RnB + 1 RuO+1
Nb | * Ra l (B.74)
= 1-82
N, I + Rn | -+ Kn
Note that
N_ N2 Np__Ne_ 1+Ra g2 | (3.75)
N, N Noo Ne 4Ry 1+ Rn
for
| Kn 82
@:Q*E En.!-KN < |
2
|+ (A.76)
?n”RN8

Note also that
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(A.77}

N”=Nc<N»<N®  for 0>0«

whereas
(A,78)

) (2}
N =Nc¢>Np>N for © <Q*

Thus, the interaction point is defined by
‘ ) 7
N= N for 6>6« @79

(which implies also that N = Nc and thus, the flutter frequency is equal to

N = N for 6<0x

zero) or
w_, and the fourth

For this second case, the roots are given by p = 0, p =
root is real and negative. Finally, 0 =8, yields b = ¢ =d = 0; thus, in this
case there is a triple root p = 0, and a negative real root p = - a
It should be noted that these last two cases imply
(A.80)

0<0 < 0y <!
which is equivalent to
(A.81)

9, >8§. >0

This condition is never satisfied with the kind of damping considered here.
(1) . . X .
< 1, there is no intersection

Finally, it should be noted that if N
(1) < 1 corresponds to imaginary values for AB'

point since N

125




9z1

MEMBRANE FORCE PARAMETER, N/Nl

INTERSECTION 2, N{z)/Nl
3.8
PERTURBATION METHOD
3.6
/ N /N
/ / b/r\l
3.4 - s dudliomd i i e Pemed Maead [ Mmond — o — ) h— — b ol e
INSTABILITY BOUNDARY 2
3.2
3.0
2.8
2.6 [
2.4 N(l) . El‘c_
Ny N
2.2 1
INTERSECTION 1 AND
5 2 INSTABILITY BOUNDARY 1
2.0 £
10
9.9
1.8 f ~——g?aE2.
Q2
10
l.6
Oii i ] | 1 1 ) 1 ] 1 i i 1 i 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DAMPING RATIO PARAMETER, 6 = gz/gl
(1) (2)
FIG. A.1 MEMBRANE FROCES N N AND N

bl Ncl

AS FUNCTIONS OF THE DAMPING RATIO, O = gz/gl




1= H@\Nm = @ ‘OILVY ONIJWYd dHL ¥Od ALITIGOYLS J0 NOIDEd C°V ‘DId

1 MZ\Z SUNLIWNYEYd 20504 ANVHEWHER
v n/*n ¢ z

1
w , V77

e
e
S
ONITIONE y
\
-
\
FIGYLS
\
\
\
T - -
T z
O = Nm \
SIAOW T
0 = q_ e + oqe -
FIVIAS'S ‘ TWIA-Z z -~
QOHIAW NOILVERININAd +

00T

00¢

00t

V HIIIWVIYd RINSSEEd DIWYNAA

127



Te 2
V= B/°6 = g ‘Or1avy ONIdWY( FHL ¥04 ALITIEVIS JO NOIDHEM €°Y 914

Hz\z "MATANYIVE TOU0I ANV GWAW

C .
~
o

0% 0°¢ HZ\«Z 0°2Z
, - 0
™~ ~
\
-~
ONITIONH e
.\
7
- 00T
,\
>
\
Jd. 2y
-
TIGVLS
A
-
P
= 00C
HALINTI
0 =0 \
1 —
NOIOTY 7777 B mm - —-= s
TIGYLS sed 0 = Nm -
SAGOH 2 A
ALYId °S°S * "NIWIGQ-Z
AOHIEW NOILYRMNINTJ
00¢

Vv ‘¥ALINVIVd TANSSTId DIWVNAQ

128



T
o1 = '6/%6 = g ‘OILVY SNIdWYAd FHIL ¥Od ALITIEYLS Jd0 NOIOM ¥°V °"9IJ

HZ\Z NALANVIYA 0904 ANV EWEIW
T

0¥ 0°¢ 0°2 N/*N 0°T 0
| ) J 777777777
f /|
=~ - ONITYONT . — N
| =
0=p \
|
| /s
Vi A
| /
JALINTA 4 \
_ 4
_ onol onvmm+oﬁmumo ]
_
NoIomd F77Y4 T & B =
A 4 J
a1avLs ,,,,, 4 0 = Nm
SHAAOW T

4L¥1d °S°S ‘' °"NIWIA-C
JOHLIW NOILVEINLYHd

00T

00¢

00€

V ‘¥3ianvyvd TINSSTId I IWNYNAQ

129



APPENDIX B

AN ILLUSTRATIVE EXAMPLE

B.l Introduction

As mentioned in Subsection 2.1, the analysis developed in Section 2
contains a parameter A4. The choicé of the value of A4 is based upon a physi-
cal hypothesis which can be stated as follows: if the curve of amplitude ver-
sus A bends™, then the "knee" of the curve separates the unstable branch from
the stable branch; this "separation" point is used to evaluate A4 {see Eq. 2.84).
Singe this hypothesis is not derived from any mathematical reasoning but is
merely based upon physical intuition, it is convenient to verify the correct-
nesg of the assumption by appiying it to a simple case for which the solution
is known. The solution should have two limit cycles (the inner one stable and
the outer one unstable); By choosing the two-limit~cycle solutions of the form

X=X, (t+9) (stable)
B.1)

X = Xzcod (t+ 4’;) (unstable)

it is immediately verified that an equation which has these two solutions is

given by

X4[ A XX+ Y (X4 X2 P )X+ X=0

( A<o , M>0 ,1/<0) (B.2)

where Xl and x2 are the roots of the equation

-..4 -—2
PX T +MX +A=0 .
(B.3)
The formulation of the problem is given in Subsection B.2 and the solu-
tion is derived in Subsections B.3 and B.4. The choice of the value A4 is
discussed in Subsection B.5 where it is also shown that the results are in

full agreement with the exact solution.® Finally, the comparison with the

w 3 .
The value AA, defined in Eg. B.4, is analogous to the A4 in Section 2.
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two-time-scaling technique (Refs. 8 and 9) is made in Subsection B.6 where it

is shown that the two methods yield exactly the same results.

B.2 Formulation

Let

1=-£2+k4£4+0(£6) (B.4)

and

X=EX, +€3)(5+65X5+O(87) (B.5)

where the functions Xk depend upon the multiple time scales

2 4
'to“”t; fz‘:gi. )-Z-4~E i.)... (B.6)
The scales tk are treated as independent variables; hence
. & )
_Q{,:,?_+£28 +g +O(5) (B.7)

dt a'to 3t2 9'['4

Combining Egs. B.2, B.4, B.5, and B.7, and separating terms of the same order,

yields the following system

System Order €:

2
=]
System Order 83:
B.9)
X aZX, X, {
1K= ot
afp a-taai} a °

ALEE X
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5
System Order € :

?3){5 2;7<| 2 Zf)(‘ BSX}
S5 tXs7 - ( o T it a't.,atz)

X, . 29X 2X
(St =2) - e (53

2 F G ) ]

(2R x] (284 22)]

AR

(B.10)
B.3 Solution
The solution of Eq. B.8 is given by
- [to *"Lto
)(\" %\62 +VA f?
(to
= 2 Real (AE'"")

' (B.11)
where A 1s the function of t2, t4, . » » and A* is the complex conjugate of Aa.
Combining Egs. B.9 and B.1ll yields

> ¥
2, ZKeal[(Q A “A+AMAA )te ] (8.12)
‘a-tb
In order to avoid secular terms, the condition
2 R
2-3-%—A +4UAA =0 (8.13)
2

must be satisfied. This equation can be written in the form given by Eq. 2.26
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with (note that here o, B, and Y are real numbers.)
A= 2

pe V2
V= 21

(B.14)

The solution of Eg. B.13 is thus given by (see Egs. 2.31 to 2.33)

A=1A) e"‘i’ S (8.19)

with

Y
lA\: (40U + Ke't’) : (8.16)

where ¢ and k are functions of t4, t6, . + « Since Eq. B.13 is now satisfied,

the solution of Eq. B.1l2 is given by

it, -(t, it,
Xs= (B4 B¥6'"") = 2Real (BE ) =17

Combining Egs. B.4, B.ll, and B.l7 yields

X=2Keal [(EA+EBB)ét"]+O(55) (B.18)

where A is given by Eq. B.15, and B is still undetermined. In order to determine

the B as a function of t_, the fifth-order equations, given by Eg. B.1l0, is con-

2
sidered in the next subsection.

B.4 The Functions B(t2) and A(tz,t4)

Combining Egs. B.10, B.1ll, and B.1l6 yields
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af;f—r)( = -2 Keal {‘[ 2 53‘-’,{8;' B+4u (AIB*-r?AA*B)

2t (Mgt ig JA-iu AW

ﬂeyAsA*zjeii" [MA= 4R ] e‘"d"}

+7

(B.19)
In order to avoid secular terms, the condition
222 -B+4M(NB2A8) 12 24
{ .z 2
t(Rat g )A-LUAR 16 VAR 20
(B.20)

must be satisfied.* This equation can be written as

_ﬁaf +BB+ Y (AB™2AKB)+=2=0 (2.20)
2 A ‘
with ¢, B, and Y given by Eq. B.14 and

0 (B.22)

s5=[5"+ s"AAt s®( AR )+ 53 2 A A

. ,
Incidentally, if Eg. B.20 is satisfied, the solution of Egq. B.1l9 is given by

Xs= 2Real [C™LEA (1-apAnt)E"]

where C can be determined only by studying the seventh-order equation. Thus, the
function X_. is not of interest here; the aim of the analysis of Eg. B.20 is
5 .

to obtain the functions B(tz) and A(tz,t4).
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with

(4] _ L‘//{
- 2
@) '
o = 8 ) (B.23)

Equations B.21 and B.22 are identical to Egs. 2.55 and 2.56.

Following the same procedure outlined in Subsection 2.7 one obtains

B=(betibi)A (8:24)

with
br = [(*‘g-g-% +-;,/—Jz -A4 )12 -rc,](—:'_;—z‘B\A\‘)
21 (s 2 )AL 7{—} KMl 2
and

[

°0¢ 4 _ b
‘31-“'5a'tz 4£M!Al*cz

(B.26)
In order to avoid secular terms*, the conditions
l ak_..i.__.-ﬂ ...A = (B.27)
K a-[4 )/2 4 o
2% _p
a—td. {B.28}

must be satisfied. Thus, ¢ = q:o is independent of t, (nc change in frequency

4 4
of order €1}, whereas

*
As t - ©, for the stable limit cycles, or as t - -, for unstable limit cycles.
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e@fr "}j’z )14

K= Ko (B.29)
Combining Egs. B.16 and B.29 yields (see also Eg. B.6)
) I VA
-ttt (Aga-i)T z (4o
As{ap+x e I e
[~€% €4 (Aa-2a) J£ T/ it
“{4p+ko € TaE
(B.30)

g " - - The value of A4 is still un-

determined. As was mentioned in Subsection B.l, the choice of A4 is based

where ko and ¢ are functions of t6' t

upon physical reasoning. This choice is discussed in the next subsection.

B.5 The Parameter k4 and the Final Expression for the Solution

As was mentioned in Subsection A.1l, the main objective of this appendix
is to verify the correctness of the assumption which determines the choice of
the parameter X4'(which is analogous to A4 in Section 2). A discussion of this
assumption is given in Subsection 2.1, whereas the mathematical formulation is
given in Subsection 2.5 (see Egs. 2.79 and 2.8l). The assumption can be sum-
marized as follows: the "knee" of the curve IA! versus A separates the stable
branch of the curve from the unstable one. Mathematically speaking, the value

, for which A has its maximum value (see Eg. B.4) is

_ ’ |
Eknee - 2]\.4 (B.31)

and is equal to the value scr for which the exponent of Eg. B.30 changes sign.

|
Eer = /\/Az;"}//«lz (8.32)

The condition discussed above can be stated as

€
knee

Eknee =Ecr (B.33)
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By combining Egs. B.31, B.32, and B.33, one obtains

A _ .V (B.34)
4 = /42
and
-
E =Ecr = ———
Kkhee cr. 2)}
{B.35)
Finally, the solution of the problem is given by (see Eq. B.18)
-+ :
X=2Real [(eA+£3B)C ]+ O(E7) (B.36)
where (see Egs. B.15, B.30, and B.34) A = iAI ei¢ with
ﬂ
- (14 E*ZL ) EY
Al={aptko€ } 5.37)
and* (combining Egs. B.24 to B.28, and Eq. B.34)
J —t; . oz InlAl
B=[-4 K €7 A LAI- i —— 5 |A
/42 , I (‘Eﬁl)%
{B.38)

The limit cycle solutlon, , is obtained by setting t * ® for the stable

L.C.
2
limit cycle (e <y /2v)and t » - for the unstable limit cycle (E > U/2v) .

In both cases one obtains

[Erdo) )+ 0(e%)

X, = 2Real (€ — 3]

= ‘
Note that the arbitrary choice
€, =0 ---—£n4,u
has been made in Egs. B.25 and B. 26. This is made in order to have B = 0 in
the limit cycle solution. Further exploration is needed in order to motivate

this choice.
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with {combining Egs. B.4 and B.34)

K: -EZ-/T)I)'B 24 (B.40)

By setting E//ﬁ'= X, Egs. B.39 and B.40 reduce to
B.41

Xoe =Xcos(t+dh) t 0 (€7) (B.41)

and
4 2
JXT+UX"+A=0 (B.42)
which is in full agreement with Egs. B.2 and B.3.

B.6 Modified Two-Time-Scaling Technique

In order to compare the multiple-time-scaling technique with the two-
time-scaling technique (Refs. 8 and 9), the analysis is repeated here by using
the two-time-scaling technique. In order to maintain the same flexibility
of the multiple-time-scaling, it is convenient to introduce stretching of both
scales. This procedure (which generalizes the two-time-scaling technique) will
be termed the "modified two-time-scaling technique". Thus, instead of the

multiple scales (see Eg. B.6) consider the two "stretched"” scales

to=(1tE*T+ -~ )t
t,= (€2+€°T+-- )t (B-43)

Then Eg. B.7 is replaced by
d 4 ) 2 ¢ .2
[ P e ( 5.‘-5 Z.'.. )__‘
dt (1+e"c )ato 212
2 2 3 4 q-a = + 0(86)
=2 ;g2 = +C = (B.44)
210 € 2t, T E ( ots atz)
Thus, Egs. B.8 to B.lO are still valid if 3/3t4 is replaced by U(B/Bto) +
T%BJBtE}@ In other words, the only modification is that in Eqg. B.1l0 the term

82X1/3t , is modified as follows
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=X BZX
) W 3 ‘Z’ ]
ot, 2L, at 21,912 (B.45)

Note that Egs. B.8 and B.9 are equal in both methods. Thus, the results cb~-
tained in Subsection B.3 are valid for the modified-two-time-scaling method

also. Hence by using Egs. B.1ll, B.15, and B.16, one obtains

- "/ (o
X.=2Real[(4/4*K€tz) ‘o @ +¢)} (B.46)

where K and ¢ are functions of t, in the multiple-time-scaling technique,

4
whereas they are constant in the modified-two-time-scaling technique. By

using Eq. B.46, Eg..B.45 can be rewritten as

[- % (4prkE™)’ 6% 2K i (aprkET] |
A 214

P

‘2‘2 Ti2 . ~L2 'g
[T (ap+ke™ ) ke s iv(4prke™)"]

(B.47)
or separating real parts and imaginary parts
I 2
— = —-T
K oty
°Y > T
214 (B.48)
Comparing Eqgs. B.27, B.28, and B.48 yields
U
‘Z::A.4 VZ
(B.49)
=0

Combining Egs. B.15, B.16, B.43, and B.49 yields®*

*
In Eq. B.50, the symbols Ko and ¢0 are used instead of K and ¢ as a reminder

that K is considered a constant in the two-time-scaling technique.
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e+ % (A - Yy ) 1T }"'/"8«'9‘

A= {4/“ 1Ko € (B.50)
which is equal to Eg. B.30. The discussion of the value of )\4 is the same in
both cases. Thus, as mentioned in Subsection B.l, the multiple-time-scaling

technigque and the modified two-time-scaling technique yield exactly the same

result..
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